锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx

上传人:b****5 文档编号:18616415 上传时间:2022-12-29 格式:DOCX 页数:9 大小:71.59KB
下载 相关 举报
锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx_第1页
第1页 / 共9页
锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx_第2页
第2页 / 共9页
锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx_第3页
第3页 / 共9页
锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx_第4页
第4页 / 共9页
锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx

《锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx(9页珍藏版)》请在冰豆网上搜索。

锅炉设计外文翻译燃煤锅炉的个案事故研究Word格式文档下载.docx

Vol.III,LNAI3683,Springer,Heidelberg,Germany,2005,pp.953-958.

MiningTemporalData:

ACoal-FiredBoilerCaseStudy

AndrewKusiakandAlexBurns

IntelligentSystemsLaboratory,IndustrialEngineering

3131SeamansCenter,TheUniversityofIowa

IowaCity,IA52242–1527,USA

andrew-kusiak@uiowa.edu

Abstract

Thispaperpresentsanapproachtocontrolpluggageofacoal-firedboiler.Theproposedapproachinvolvesstatistics,datapartitioning,parameterreduction,anddatamining.Theproposedapproachwastestedona750MWcommercialcoal-firedboileraffectedwithafoulingproblemthatleadstoboilerpluggagethatcausesunscheduledshutdowns.Therare-eventdetectionapproachpresentedinthepaperidentifiedseveralcriticaltime-baseddatasegmentsthatareindicativeoftheashpluggage.

1Introduction

Theabilitytopredictandavoidrareeventsintimeseriesdataisachallengethatcouldbeaddressedbydataminingapproaches.Difficultiesarisefromthefactthatoftenasignificantvolumeofdatadescribesnormalconditionsandonlyasmallamountofdatamaybeavailableforrareevents.Thisproblemisfurtherexacerbatedbythefactthattraditionaldataminingdoesnotaccountforthetimedependencyofthetemporaldata.Theapproachpresentedinthispaperovercomestheseconcernsbydefiningtime

windows.

Theapproachpresentedinthispaperisbasedonthetwomainconcepts.Thefirstisthatthedecision-treedata-miningalgorithmcapturesthesubtleparameterrelationshipsthatcausetherareeventtooccur[1].Thesecondconceptisthatpartitioningthedatausingtimewindowsprovidestheabilitytocaptureanddescribesequencesofeventsthatmaycausetherarefailure.

2EventDetectionProcedure

Inthecasestudydiscussedinthenextsectionrareeventscanbedetectedbyapplyingthefivestepprocedure.Thesefivestepsinclude:

Step1:

ParameterCategorization

Theparameterlistisdividedintotwocategories,responseparametersandimpactparameters.Responseparametersarethosethatchangevaluesduetoarareeventorafailure,e.g.,anairleakinapressurizedchamber.Impactparametersaredefinedasparametersthatareeitherdirectlyorindirectlycontrollableandmaycausetherareevent.Thesearetheparametersthatareofgreatestinterestforthedeterminationofrareevents.

Step2:

TimeSegmentation

Timesegmentationdealswithpartitioningandlabelingthedataintotimewindows(TWs).Atimewidowisdefinedasasetofobservationsinchronologicalorderthatdescribeaspecifiedamountofcontinuousobservations.Thisstepallowsthedataminingalgorithmstoaccountforthetemporalnatureofthedata.Themosteffectivemethodtosegmentthedataisbydetermining/estimatingtheapproximatedateoffailureandsetthatasthelastobservationofthefinaltimewindow.

Step3:

StatisticalandVisualAnalysis

Thisstepinvolvesstatisticalanalysisofthedataineachtimeperiodthatwasdesignatedinthepreviousstep.Processshifts,changesinvariation,andmeanshiftsinparametersarehelpfulinindicatingthattheappropriatetimewindowsandparameterswereselected.

Step4:

KnowledgeExtraction

DataminingalgorithmsdiscoverrelationshipsamongparametersandanoutcomeintheformofIF…THENrulesandotherconstructs(e.g.,decisiontables)[1],[5].Dataminingisnaturalextensionofmoretraditionaltoolssuchasneuralnetworks,multivariablealgorithms,ortraditionalstatistics.Inthedetectionofrareevents,thedecision-treeandrule-inductionalgorithmsareexploredfortwosignificantreasons.First,thealgorithmsgenerateexplicitknowledgeintheformunderstandablebyauser.Theuserisabletounderstandtheextractedknowledge,assessitsusefulness,andlearnnewandinterestingconcepts.Secondly,thedataminingalgorithmshavebeenshowntoproducehighlyaccurateknowledgeinmanydomains.

Step5:

AnalysisofKnowledgeandValidation

Thisstepdealswithvalidationoftheknowledgegeneratedbythedataminingalgorithm.Ifavalidationdatasetisavailableitshouldbeusedtovalidatetheaccuracyoftherules.Ifnosimilardataisavailablethenunuseddatafromtheanalysisora10-foldcross-validationcanbeutilized[6].

3PowerBoilerCaseStudy

Theapproachproposedinthisresearchwasappliedtopowerplantdata.Dataminingalgorithmsarewellsuitedforelectricpowerapplicationsthatproducehundredsofdatapointsatanytimeinstance.

Thiscasestudydealswithanashfoulingconditionthatcausesboilershutdownsseveraltimesayearonacommercial750MWtangentially-firedcoalboiler.Theashfoulingcausesabuildupofmaterialandpluggageinthereheatersectionoftheboiler.Oncethebuildupbecomessubstantialtheboilerperformanceisnegativelyaffected.Thisleadstothederatingandtheeventualshutdownoftheboiler.Thecleaningoftheboilerduringtheshutdownrequires1to3days.Thisproblemismademoredifficultbythefactthereisnomethodtodeterminethelevelofashbuildupwithoutshuttingdowntheboilertophysicallyinspectthearea.Furthermore,inanalysisallparameterswerewithinspecifications,sotherewasnoobvioussingleparameterthatiscausingthepluggage.Toinvestigatetheproblemconsideredinthispaper,datawascollectedon173differentboilerparameters.Thisincludedflows,pressures,temperatures,controls,demands,andsoon.Thedatawascollectedinone-minuteintervalsoverthecourseofthreemonths.Thedatacollectionbegandirectlyfollowingashutdownwherethereheatersectionoftheboilerhadnopluggage.Thecollectionperiodendedapproximatelythreemonthslaterwhentheboilerhadtobeshutdownforpluggageremoval.Thisdatasetcontainedover168,000observations.

Thelistof173parameters,whichincludedbothresponseandimpactparameters,wasanalyzed.Thelistwasreducedtoincludetwenty-siximpactparameters.Thisparametercategorizationandreductionwasaccomplishedwiththeassistanceofdomainexpertsaswellasstatisticalanalysissuchascorrelationandmultivariateanalysis.

Theinitialstepfortimesegmentingthedatawastodetermineanapproximatedateforthefailureevent.Inthisapplicationthefailureeventwasdefinedbythedatewhentheboilerwasderatedduetothepluggage.Thecauseoftheshutdownwasconfirmedthroughvisualinspectionoftheaffectedregion.Thisdatewasthensettobethelastdayofthefinaltimewindow(TW6).

Thewindowsweresettobeapproximatelyoneweeklong.Aweekwaschosenforseveralreasons.First,theboilerwasinspectedapproximatelyonemonthpriortoitsderating.Duringtheinspectionthereheatersectionoftheboilerwascompletelyfreeofash.Thisinformationprovidedtheknowledgethatthepluggagerequiredlesstheonemonthtomanifestitselftothepointofshutdown.Itwashypothesizedthatthepluggagerequiresseveraldaystobuildup.Basedonthisinformationoneweekwasdeemedtobeanadequatetimewindow.Oneweekalsoprovidedasufficientnumberofobservations(over10,000perwindow)forthedataminingalgorithms.

Usingthederatedateandaone-week-longtimewindow,thedatawasdividedintosixtimewindowsshowninFigure1.Timewindow1(TW1)wasincludedtoensurethattherewasadequatedatatodescribenormaloperatingconditions.

Thereappearsbeaprocessshiftbetweentimewindows3and5inFigures1.Thewesttiltdemonstratesameanshiftduringwindowthreeandthehotreheatsteamtemperaturedisplaysameanshiftaswellasalargeincreaseinvariationstartingintimewindowfourandculminatinginwindowfive.Theresultsofthisanalysisleadtothehypothesisthattheeventsthatleadtotheeventualpluggageoccurbetweentimewindowsthreeandfive.Italsoconfirmstheselectionofparametersandwindowsize.

Thedataminingapproachwasthenappliedtothedatasettopredictthepredefinedtimewindows(decisionparameter).Thealgorithmproducedasetofrulesthatdescribedtheparameterrelationshipsineachtimewindow.

Theknowledgeextractedbythealgorithmhadanoverall10-foldclassificationaccuracyof99.7%.Theconfusionmatrix(absoluteclassificationaccuracymatrix)isshowninFigure2.Thematrixdisplaystheactualvaluesandthevaluespredictedbytherulesduringthecross-validationprocess.

ItcanbeseenfromthedatainFigure2thattherearefewpredictedvaluesthatareoffbymorethanonetimewindowfromtheactualwindow.Theresultsprovidedintheconfusionmatrixprovideahighconfidenceintheproposedsolutionapproach.

Anothertestdatasetwasextractedfromtheweekfollowingtimewindow1andwaslabeledtimewindow2(TestTW2).Thelastportionofthedata(TestTW3)wasobtainedfromtheweekafterthegeneratorwasderatedandtheoutcomewaslabeledtimewindow6(TW6).Thetotaltestsetcontainedover30,000observations.

Therulesandknowledgethatwereextractedfromtheoriginaldatasetwerethentestedusingthetestdataset.Forpurposesofanalysistimewindows1–3wereconsiderednormalandtimewindow4–6wereconsideredfaulty.TheresultingconfusionmatrixisshowninFigure3.

Therulesaccuratelypredictedthenormalcases,buttheywerenotaseffectiveinpredictingthefaultcases.Thisismostlikelyexplainedbythefactthatthetestdatalabeled,timewindow6,wasextractedaftertheboilerhadbeenderated.Thederatingof

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 工作计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1