外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx

上传人:b****4 文档编号:18449786 上传时间:2022-12-16 格式:DOCX 页数:37 大小:675.82KB
下载 相关 举报
外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx_第1页
第1页 / 共37页
外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx_第2页
第2页 / 共37页
外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx_第3页
第3页 / 共37页
外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx_第4页
第4页 / 共37页
外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx_第5页
第5页 / 共37页
点击查看更多>>
下载资源
资源描述

外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx

《外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx(37页珍藏版)》请在冰豆网上搜索。

外文翻译通过优化节点位置减小反旋转引擎的动态响应Word格式文档下载.docx

MINIMIZINGDYNAMICRESPONSEOFCOUNTER-ROTATINGENGINESTHROUGHOPTIMIZEDNODEPLACEMENT

PeterD.Hylton

PurdueSchoolofEngineering&

Technology

IndianaUniversityPurdueUniversityIndianapolis

ABSTRACT

Ithasbeenpreviouslyproposedthatalow-speedrotorbalancingprocedurecanbesuitableforsupercriticalshafting(GT2008-50077).Thatpaperdocumentedthenecessityoftakingintoaccountnodallocationsinthebendingmodeshapesofasupercriticalrotorwhendesigninganoptimumbalanceprocessforsucharotor.Thisisduetothefactthatbalancecorrectionforces(orforthatmatter,anyforces)havetheleastimpactwhenappliednearthenodesofaparticularmode.

Thisresultledtoconsiderationthatnodelocationoptimizationcouldhelpwithanotherissue,i.e.theexcitationofbackwardexcitedwhirlmodesinacounter-rotatingsystem.Whendesigningatworotorgasturbine,therearedistinctadvantagestohavingthetworotorsturninoppositedirections.Amongthesearetheabilitytoshortenandlightentheenginebyreducingthelengthoftheenginesincearowofstaticturningvanescanbeeliminated.Theenginecanbefurtherlightenedbyinclusionofaninter-shaftbearingwhicheliminatesstaticbearingsupportstructure.Additionalreductioningyroscopicmaneuverloadsanddeflectionscanalsobeachieved,thusresultinginmultiplebenefitstoacounter-rotatingsystemwithaninter-shaftbearing.

Unfortunately,theexcitationofbackwardwhirlmodesofonerotor,whichwouldnormallynotbeamajorconcerninaco-rotatingengine,canbeasignificantissuewhenexcitedinsuchacounter-rotatingenginethroughtheinter-shaftbearing,whichservesasaconduitforforcesfromtheotherrotor.However,thelogicoftheearlierstatementregardingtheeffectivenessofforcesappliedat,ornear,anodalpointledtothehypothesisthatoptimizingthenodallocationsrelativetotheinterfacepointsbetweentherotorscouldminimizetheresponsivenessofthesystem.Thisledtothehypothesisthatbyoptimizingthenodeplacementrelativetotheinter-shaftbearing,itshouldbepossibletominimizetheexcitationofthebackwardmodes.Thispaperexaminesthatpropositionanddemonstratesthatconsideringthisaspectduringthedesignofsuchanenginecouldleadtosignificantbenefitintermsofminimizeddynamicresponses.

Keywords:

Balancing,Counter-Rotating,BackwardWhirl

INTRODUCTION

Inanefforttodesignandbuildsmaller,lightweightengines,thatarestillcapableofsignificantpoweroutput,gasturbinedesignershavemadeattemptstoeliminatestaticstructuresthroughdevelopmentofinnovativetwo-spoolengineconfigurations.AnumberofsuchresearchactivitieshavebeenfundedthroughadvancedtechnologyprogramssuchastheAirForce’sIntegratedHighPerformanceTurbineEngineTechnology(IHPTET)[1,2]andtheNationalAeronauticsandSpaceAdministration’s(NASA)HighSpeedRotorCraft(HSRC)[3]programs.Counter-rotationsystemshavebeenevaluatedinbothprograms[4,5]andfoundtoofferadvantages.Iftworotorsaredesignedtorotateinoppositedirections,thenitispossibletoeliminatetherowofturningvanesbetweenthelastrowofturbinebladesgoinginonedirectionandthefollowingrowofturbinebladesturningintheoppositedirection[6,7].Eliminationofthesevanesallowstheenginetobeshorterandthereforelighter.Freedman[8]haspointedoutthat,inadditiontothesavingsinlength,andthusweight,thereisalsoasavingsinrequiredcoolingairthatwouldhavebeenusedfortheremovedvanesandadditionallythereisagaininefficiencyduetoimprovedswirloftheairtravelingthroughthestages.AssummarizedbyZhaoandWang,“Thevanelesscounter-rotatingturbine,whichiscomposedofahighlyloadedsinglestagehighpressureturbinecoupledwithavanelesscounter-rotatinglowpressureturbine,isusedtosignificantlyincreasethethrust-to-weightratioofthepropulsionsystem.”[9]

Thesecondwaytoeliminatestaticstructure,andthuslengthandweight,istomovefromtwoseparatebearingssupportingthetworotorsthroughtwobearingsupportstructures,asshowninFigure1,andgotoaninter-shaftbearingandasinglebearingsupportstructure,asshowninFigure2.AsGambleexplains,“Advancedengineconfigurationstudieshaveshownlargelifecyclecostadvantagesforanenginewithcounter-rotatingspoolsandarotorsupportsysteminwhichthehigh-speedrotorisstraddlemounted(bearingsoneachend)withaninter-shaftbearingsupportatthehighpressureturbine.”[10]

Figure1.Sampleturbineconfigurationshowingtwoseparatebearingsupportstructuresforthetwoenginerotors.

Figure2.Sampleturbineconfigurationshowinganinter-shaftbearingandasinglebearingsupportstructure.

Additionaladvantagestocounter-rotatingthespoolsoftheengineoccurwhenmaneuverconditionsoftheaircraftareconsidered.AsexplainedbyCohen,[11]“duringthenormalmaneuveringofairplanesandmissiles,gyroscopicloadsareappliedtotherotatingparts.”Hegoesontoexplainthatthisproblemisofconcerntoenginedesignersbecauseoftheinducedvibratorybendingstressesbetweentherotatingandstationaryparts.Undermaneuverconditions,thegyroscopicforcesappliedbytherotorstothestaticstructures,andthustotheairframemounts,canbetheprimaryloadsfortheengine,exceedingtherotationalloads.[12]Howevertheseloadscanbereducedbyutilizingcounter-rotatingdesigns.Thisallowsweighttobestrategicallyremovedfromboththeenginecaseandthenacellestructure.Thesourceofthisloadreductionisthatgyroscopicloadsoccurorthogonaltoboththerotationalvectorassociatedwiththeturningaxisoftheairplaneandtherotationalvectorassociatedwiththerotationoftheenginerotor.Sincethecounter-rotatingspoolshaveoppositerotationalvectors,theresultingloadsfromthetwospools,whencombinedthroughtheinter-shaftbearing,tendtocanceleachotherattheenginecaseandmounts.Itshouldbenoted,however,thatthisdoesnotreducetheloadattheindividualbearings,sothesemuststillbeaccommodatedinbearingselectionanddesign.

Thiscanbeshownmathematicallyasfollows.Considerarotatinginertia,withanangularvelocityaboutthexaxisoftheengine,x.Thiscorrespondstotherotationalspeedoftheengine.Nowapplytothissameinertia,anangularrotationabouttheyaxisofy,correspondingtotheeffectcreatedwhenthevehicleinwhichtheengineresidesexperiencesaturningmaneuverabouttheyaxis(i.e.ayawmotioniftheyaxisisintheverticaldirectionrelativetothevehicle’scenterofgravityconsistentwiththestandardorientationofaircraftaxes).Usingstandardgyroscopictheory,acouple(i.e.torque)willbecreated,whichisgivenbyTz=IPxy.WhereIPisthepolarmomentofinertiaoftherotatingmassandthedirectionofapplicationofthisresultingtorqueisshowninFigure3.Theforcesnecessarytoreactthistorqueontherotorsystemmustbesuppliedtotherotorbytheenginecaseatthebearingsandmustultimatelybereactedbytheairframestructurewhichsupportstheenginecase.

Figure3.Applicationofgyroscopictorquecausedbymaneuverloads.

Ifasecondrotorexistsintheengine,rotatinginthesamedirection,onseparatesupports,additionalforcesfromthesecondrotorwillhavetobereactedbytheenginecaseandmounts.Nowsupposethesecondrotorisinsteadsupportedbythefirstrotor,andisrotatinginthesamedirectionasthefirstrotor,butwithanangularvelocityofx’.Asecondgyroscopictorquewouldbeappliedtothisrotor,givenbyTz’=IPx’y,asrepresentedinFigure4.Theforcesnecessarytoreactthismomentwouldhavetobesuppliedbythefirstrotorandthereforeultimatelybytheaforementionedbearingsandcase.However,ifthesecondrotoriscounter-rotatingrelativetothefirstrotor,thenx’hastheoppositesignasx,andTz’isinanoppositedirectiontoTz(oppositethistimetowhatisshowninFigure4).Ifthisisthecase,thenitcanbeeasilyseenthattheforceswhichmustbereactedbytheenginecaseandmounts,arebasedontheresultanttorqueTz–Tz’,andarethereforelessthanwouldhavetobereactedineitherofthepreviousscenarios.

Figure4.Applicationofgyroscopictorquetoaco-rotatingdualrotorsystemcausedbymaneuverloads.

Therearedown-sideeffectstosuchadesign.Withanormal,singlespoolgasturbine,thestaticnaturalfrequencyoftherotorincreasesduetothegyroscopicstiffeningeffectsthatoccurastherotorturnsfaster,asshowninFigure5.However,whentherearetwocounter-rotatingrotors,whichcanpotentiallyexciteeachotherthroughtheinter-shaftbearing,thegyroscopiceffectscreatebothanincreasinganddecreasingnaturalfrequency,[13]suchthattherearebothforwardexcitedandbackwardexcitedcriticalspeeds,asshowninFigure6.

Thiscanbeshownmathematicallyasfollows.Thedynamicequationofmotionforadiskrotatingonshaftisusuallywrittenasfollows:

Representingtheresultantharmonicmotionasafunctionoftheformeitandrearrangingasaneigenvalueproblem,wegetthefollowingdeterminantform:

Figure5.Gyroscopicstiffeningcausesthenaturalfrequencytoincreaseasafunctionofrpm.

Figure6.Gyroscopiceffectsforacounter-rotatingrotorsystemcanleadtotwocriticalspeeds,onebackwardexcitedandforwardexcited.

Theresultantdeterminant,whensolvedasaneigenvalueproblem,willyieldoneresultfortheeigenvalues(i.e.naturalfrequencies)basedonpositivevaluesoftherotationalspeedparameter,,anddifferent,lower,eigenvaluesbasedonnegat

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1