光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx

上传人:b****3 文档编号:18420023 上传时间:2022-12-16 格式:DOCX 页数:8 大小:154.56KB
下载 相关 举报
光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx_第1页
第1页 / 共8页
光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx_第2页
第2页 / 共8页
光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx_第3页
第3页 / 共8页
光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx_第4页
第4页 / 共8页
光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx

《光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx》由会员分享,可在线阅读,更多相关《光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx(8页珍藏版)》请在冰豆网上搜索。

光电子技术王俊波光波在光纤波导中的传播Word文档格式.docx

5液芯光纤

特点是纤芯为液体,可满足特殊需要;

6晶体光纤

纤芯为晶体z可用于制造各种有源和无源器件。

2.光纤的特性

(1)

2

波导的性质由纤芯和包层的折射率分布决定,工程上定义/

为纤芯和包层间的相对折射率差

当时ZK0.01,上式简化为

此即为光纤波导的弱导条件。

5

光纤的弱导特性是光纤与微波圆波导之间的重要差别之一。

弱导的基本含义是指很小的折射率差就能构成良好的光纤波导结构<

而且为制造提供了很大的方便。

一般介质波导截面上的折射率分布可以用指数型分布表示为

二二

1/2J

n(r)=n}

A

襲2A(星

(0<

r<

a

n(r)=n/1-2A)1/2=(r>

a)

上式中“为纤芯的半径,W为光纤轴线上的折射率#112为包层折射率,Q为一常数。

当G=0时,即为阶跃光纤

阶跃折射率光纤

梯度折射率光纤

当&

=2时,即为平方梯度光纤

二.光束在光纤波导中的传播特性

d

ds

dr

n(r)——ds

=Vn(r)

射线理论的基础是光线方程(费马原理)

厂:

空间光线上某点的位置矢量,s:

该点到光线到原点的路径长度刃(丹:

折射率的空间分布。

眉用上式,结合初始条件<原则上就可确定任意已知折射率兀(馮布介质光线的轨迹。

1.阶跃光纤中光束的传播

均匀介质中光线轨迹是直线<

光纤的传光机理在于光的全

反射。

光纤可视为圆柱波导,在圆柱波导中,光线的轨迹

可以在通过光纤轴线的主截面内,如图2(a)所示,也可以不

在通过光纤轴线的主截面内<

如图2(b)所示。

要完整的确定

一条光线,必须用两个参量,即光线在界面的入射角&

和光

线与光纤轴线的夹角盜

(a)

图2阶跃折射率光纤纤芯内的光线路径(a)子午光线的锯齿路

径;

(b)偏斜光线的螺旋路经及其在纤芯横截面上的投影。

(1)子午光线

当入射光线通过光纤轴线,且入射角大于界面临界翕&

()=sin_1(n2//?

!

)时,光线将在柱体界面上不断发

生全反射,形成曲折回路,而且传导光线的轨迹始

终在光纤的主截面内。

这种光线称为子午光线,包

含子午光线的平面称为子午面。

设光线从折射率为兔的介质通过波导端面中心点入射,进入波导后按子午光线传播。

根据折射定律,

sin%=nxsin(px=nxcos0x=nxJl-sin20x

当产生全反射时『要求G>

%>

因此有

 

sin^0<

—(«

[2-/12)1/2

(5)

°

lll(册山)、

書畫i厨L®

1、2—

(6)

2020、4、10

(2).斜射光线

当入射光线不通过光纤轴线时,传导光线将不在一个平面

内,这种光线称为斜射光线。

如果将其投影到端截面上<就会更清楚地看到传导光线将

主全限制在两个共轴圆柱面之间,其中之一是纤芯•包层边界,另一个在纤芯中,其位置由角度%和°

决定,称为散焦面。

图3阶跃光纤中的斜射光线

5为端面入射角,°

为折射角,a为折射光线与端面的夹角。

情况下,光纤端面的光线入射面与圆柱面相切(6产90。

)f在光纤内传导的

显然,随着入射角E的増大,内散焦面向外扩大并趙近为边界面。

在极B

光线演变为一条与圆柱表面相切的螺线,两个散焦面重合。

sin必

(8)

(n2"

)1/2sin醐=九①―

nxcos/nxcos/

丫为入射面与子午的夹角。

当弘二“2二1(空气)时,最大入射角为

sm曲=皿

(9)

COS/

式中需)星传导子午光线的最大入射角。

由上述讨论可知,在圆柱界面上一点A处所有可能的入射光线可分为三部分:

A.移引光线(折射光线,折射角小于临界角):

不满足全反射/部分光线折射到包层中去。

B.导引光线(折射角大于临界角):

光线将限制在纤芯中传播。

C.泄漏光线(隧道光线):

光线虽然满足折射角大于临界角,但穹曲面上并不发生全反射。

(参见教材P61图2-21)

(3)■不同光程引发的光脉冲的弥散

阶跃光纤中与光纤轴成不同夹角的导引光线,在轴向经过同

样距离时,各自走过的光程是不同的。

因此<若有一个光脉冲(含有多种频率的光波、在入射端激发起各种不同角度的导引

光线I色散:

折射率是频率的函数).那么由于每根光线经过的光程不同,就会先后到达终端,从而引起光脉冲宽度的加宽,称为光脉冲的弥散。

光线经过轴向距离乙所花的最长和最短时间差为

▲Ln:

Ln、Ln.‘

(10)

Ar=―1=―A

cn2cc

可见,光脉冲弥散正比于/,21愈小A就愈小。

2.渐变光纤中光束的传播

只讨论平方率梯度光纤中光波的传播特性。

平方律折射率分布光纤的〃⑴可表示为

/、2

(11)

zi2(r)=Hj21—2A—

\a>

(2c)启SCOM

3)(2o)启S£

H」

着s畫燼1暴*|-盘3!

菁3卑盍

listens(I)

图4渐变折射率分布光纤纤芯内光线的路径及其在纤

芯横截面上的投影(a)子午光线路径;

(b)斜射光线路

3乙

(c)投影和切向间的夹角给的

0W寸

(2)平方律折射率分布光纤中光线

的群迟延和最大群迟延差

光线经过单位轴向长度所用的时间称为比群迟延即单位长度的群迟延。

在非均匀介质中,光线的轨迹是穹曲的。

沿光线轨迹经过距离S所用的时间伪

(14)

KI

A2

(15)

详细计算表明最大的群迟延差为

可以看到,平方律分布光纤中的群迟延只有阶梯折射率分布光纤的02(与10式比较)o

三.光束在光纤波导中的衰减和色散特性

1.光纤的衰减

若匚.匕分别为光纤的输入■输出光功率,L是光纤长度。

衰减系数堆义为单位长度光纤光功率衰减的分贝数<

«

=ylogioy

(dB/km)

(16)

光纤衰减有下列两种主要来源:

吸收损耗和散射损耗。

(1)■吸收损耗

材料吸收损耗是一种固有损耗,不可避免。

我们只能选择固有损耗较小的材料来做光纤。

石英在红外波段内吸收较小,是优良的光纤材料。

有害的杂质吸收主要是由于光纤材料中含有FefCofNizMnfCuzVzPtzOH等离子。

(2).散射损耗

由于光纤制作工艺上的不完善>例如有微气泡或折射率

不均匀以及有内应力<光能在这些地方会发生散射<使光纤

损耗增大O

另一种散射损耗的根源是所谓瑞利散射。

光纤中尚存在所谓布里渊和拉曼散射损耗。

2.光纤色散.带宽和脉冲展宽参量间的关系

(1)光纤的色散

(17)

光纤的色散会使脉冲信号展竞,即限制了光纤的带竟或传输容量。

一般说来,单模光纤的脉冲展宽与色散有下列关系:

即由于各传输模经历的光程不同而引起的脉冲展竞。

单模光纤色散的起因有下列三种:

材料色散.波导色散和折身寸率分布色散。

(2)光纤的带宽

光脉冲展竟与光纤带竟有一定关系。

实验表明光纤的频率响应特性近似为高斯型<

如图2・23所示。

(18)

H什盂

£

是半功率点频率。

H(f)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 党团建设

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1