硫化锌的性能与制备Word格式.docx

上传人:b****3 文档编号:18401519 上传时间:2022-12-16 格式:DOCX 页数:8 大小:198.64KB
下载 相关 举报
硫化锌的性能与制备Word格式.docx_第1页
第1页 / 共8页
硫化锌的性能与制备Word格式.docx_第2页
第2页 / 共8页
硫化锌的性能与制备Word格式.docx_第3页
第3页 / 共8页
硫化锌的性能与制备Word格式.docx_第4页
第4页 / 共8页
硫化锌的性能与制备Word格式.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

硫化锌的性能与制备Word格式.docx

《硫化锌的性能与制备Word格式.docx》由会员分享,可在线阅读,更多相关《硫化锌的性能与制备Word格式.docx(8页珍藏版)》请在冰豆网上搜索。

硫化锌的性能与制备Word格式.docx

对于纳米尺寸的材料,量子表面效应产生重要影响,从而使物理量发生急剧的变化。

由于半导体材料受到量子表面效应的影响而具有的新奇的电学和光学特性,使其备受关注。

硫化锌是一种具有3.65eV带隙的II-VI族半导体,在光电器件中有非常广泛的应用,比如蓝光发光二极管,电致发光器件,光伏细胞等在显示器,传感器和激光器中广泛应用。

近几年,由于其纳米级颗粒性质的与众不同,纳米晶体硫化锌备受关注,所以研究人员尽力控制晶体人小和形态以及晶带的多晶来改变它们的物理性质,因此,在制备半导体纳米颗粒和薄膜的技术方面越来越热门。

湿化学合成法是一种简单且廉价的可以替代复杂的化学气相沉积技术和其他物理方法的制备方法。

那些常应用于制备纳米材料的一般的物理方法,通常都因为分辨率的限制而受到制约。

另一方面,湿化学合成法提供了一种简单的方法来制备大小适合分布均匀的纳米材料。

因此,作者决定通过改变沉积参数例如PH值等方案来制备N型硫化锌颗粒或薄膜。

2.实验过程

在不同的PH值(二7,10,12)的条件下使用络合剂合成硫化锌纳米晶体。

将溶解在锌-醋酸的硫化锌水溶液,络合剂(柠檬酸三钠),硫腺混合在50ml的去离子水中,搅拌均匀之后升高温度。

最后,固相隔离,通过过滤和热水浴,获得残留物,制取样品。

固体成分就是硫化锌纳米晶体,薄膜已沉积在干净的玻璃或者石英底衬或者KBr底衬上面,用来测量它们的光学性质和电学性质及其结构。

现在晶体研究已经使用2G)的范围内从10°

到70°

的CuKa的射线的菲利普斯PE-1610X射线衍射仪。

红外光谱由

Perkin-ElmerPE-Rx1的红外分光分光计确定.通过实验可知该红外光谱仪的分辨率为1cm」。

为了研究n型硫化锌薄膜的光学特性,对于所有的样品采用波长范围在300-1000nm的双记录光束UV/VIS/NIR光谱仪。

这些样品的电学性能测量在特殊设计的金属样品架中进行.通过这个仪器保持10-3mbar的真空条件。

长为1.0厘米,电极间隙为8X10-2cm的薄膜平面形状用来测量其电学性能,厚电极作为电触点.薄膜厚度大约为615nm,由轮廓仪测量。

电导率通过一个皮安表的示数来指出,准确度通常是

lpao

3.结果与讨论

3.1光学性能

图1给出了n型硫化锌薄膜沉积在玻璃基板(PH二12)的X射射图案。

图1中的光谱表明衍射峰的20是29.5°

48.7°

57.5°

反射峰的最大峰值位置为2©

为29.5°

[111]处,用另外两个稍低的峰48.7°

[220]和57.5°

[311]来指示[111]最为首选方向。

峰值随着PH值的下降而增加,观察其D值与标准D的比较结果来确定该闪锌矿立方体硫化锌薄膜的纳米詁体结构。

图⑴

 

应变及颗粒的几何特征由获得的完整的衍射峰的半值宽度可知。

半宽高(卩)通过式

(1)可以表示为应变(E)和颗粒尺寸(L)的线性组

(2)所示对于硫化锌薄膜,在PH为12的条件下,其(pcos6)/A与(sin0)/A之积是一条直线,由其与纵轴的截距的倒数可得颗粒的平均尺寸约为4nm,颗粒的直径为4.6nm时,PH值从12变为10,为5.4nm时,PH值从12变为10。

ZnSfilmatpH=12

图(3)所示为底衬是KBr托盘的硫化锌薄膜红外光谱,频谱中714cm-l频带证实了硫化锌的形成,更长的1396cm-l和1560cm-l的频谱证实了用于实验的络合剂柠檬酸三钠的存在。

前一个频带可以标记为对称拉伸C00-,后两个可以被标记为非对称C00-E15],另一条3322CID-1可以标记为拉伸柠檬酸三钠。

上述所提到的频带表明硫化锌纳米晶体以柠檬酸三钠为界,阻止了其大量生成。

4000350030002500200015001000500

Wavenumber(cm"

1)

Fig.(3)IRspectrumofn・ZnSinwavenumberregion4000-450cm1

光学性能可通过记录其薄膜的投射光谱来研究,图(4)给

出了N型ZnS薄膜在不同的PH值下的透射数据,折射率可以通

过式

(2)来计算:

n=[{2ns(l-T)l/2+ns(2~T)}/T]1/2

(2)

Fig.(4)Transmissioncurveofn-ZnSthinfilms

图(5)显示了三个不同PH值条件的薄膜的折射率与hV之间的关系,从图中可以清晰地看到N随着PH的增加而增加,随着颗粒直径的减少而增加,n值的增加可能是因为颗粒直径大减小而引起的量子限制效应所致。

从图中的数据可知,在吸收边缘,吸收系数9)可由式(3)来计算:

a弓1血(*)。

(3)

对于从价带到导带的转变,可以确定材料的带隙,a和入射光子的能量(hv)之间的关系为:

a二斗土(4),A是一

hv

个常量,Eg是材料的带隙,指数n取决于过度的类型。

n的值可以取1/2,2,3/2,3,分别对应于允许直接转换,允许间接转换,禁止禁止直接和间接分別转换。

光学带隙的值由

V

3322115

图(6)显示了在不同的PH下,薄膜(ahv)2与hvZ间的

关系。

从图中计算可得光学带隙的准确值为(3.40±

0.01)eV(PH=7),(3.68±

0.01)eV(PH二10),(3.80±

0.01)eV(PH二12),光学带隙的值随着PH值的增加而减小。

这些光带隙值在表

(1)中,显然,Eg的观测值比n型硫化锌的光学带隙值[(3.3±

0.01)eV]更高,这是由于n型硫化锌晶体的量子效应所造成的。

Table

(1)Theelectricalandopticalparametersofn-ZnSpowder

PH

Eg(eV)住0.01)

Particlesize(nm)

od(Q'

em'

E>

(eV)(±

0.01)

12

3.80

4.0

(1.9±

0.02)x10R

0.87

10

3.68

4.6

(1.6±

0.02)x107

0.80

7

3.40

5.4

(5.7±

0.02)x10"

0.76

3.2电学特性

图(7)所示为n型硫化锌薄膜的暗电导与温度在不同的PH值(12,10,7)的条件下的依赖关系,该电导率是典型的Arrhenius激活类型:

%=久钗叹曙)(5)其中AE是直流电导的活化能,K是玻尔兹曼常数。

q的值用方程⑹计算分别为为(1.9±

0.02)X10-8

0.02)X10-7

Q-lcm-1(PH二10),(5.7±

0.02)X10-6Q-lcm(PH二7),ad随着n型硫化锌颗粒尺寸的增加而增加,随着PH值的减小,导电性的增加和活化能的减少可能是由于结构参数的变化,晶粒尺寸的增加以及晶粒表面积的减小和杂质的减少等。

4.结论

N-ZnS晶体或者薄膜己经沉积在不同的PH值的液体中,这些薄

膜已经已经沉积在不同的底衬上,颗粒尺寸利用X射线衍射数据来计算为4-6nm,红外光谱数据证实了硫化锌生成了纳米粒子,利用光学数据计算光学带隙,并且发现带隙随着PH值的增加而变大,这是由于量子限制效应造成的。

通过测量其电导率发现,颗粒尺寸的增人可以增加其暗电导,减小黑暗活化能。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1