java经典算法Word下载.docx

上传人:b****5 文档编号:18343874 上传时间:2022-12-15 格式:DOCX 页数:161 大小:68.61KB
下载 相关 举报
java经典算法Word下载.docx_第1页
第1页 / 共161页
java经典算法Word下载.docx_第2页
第2页 / 共161页
java经典算法Word下载.docx_第3页
第3页 / 共161页
java经典算法Word下载.docx_第4页
第4页 / 共161页
java经典算法Word下载.docx_第5页
第5页 / 共161页
点击查看更多>>
下载资源
资源描述

java经典算法Word下载.docx

《java经典算法Word下载.docx》由会员分享,可在线阅读,更多相关《java经典算法Word下载.docx(161页珍藏版)》请在冰豆网上搜索。

java经典算法Word下载.docx

hanoi(n,'

A'

'

B'

C'

return0;

}所需次数为:

2-1=184********709551615为5.05390248594782e+16年,也就是约5000世纪

2.AlgorithmGossip:

费式数列

Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:

「若有一只免子每个月生一只小免

子,一个月后小免子也开始生产。

起初只有一只免子,一个月后就有两只免子,二个月后有三

只免子,三个月后有五只免子(小免子投入生产)......。

如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生

产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例

如以下:

1、1、2、3、5、8、13、21、34、55、89......

解法

依说明,我们可以将费氏数列定义为以下:

fn=fn-1+fn-2

fn=n

ifn>

1

ifn=0,1

 

stdlib.h>

#defineN20

intmain(void){

intFib[N]={0};

inti;

Fib[0]=0;

Fib[1]=1;

for(i=2;

i<

N;

i++)

Fib[i]=Fib[i-1]+Fib[i-2];

for(i=0;

%d"

Fib[i]);

\n"

}

3.巴斯卡三角形

#defineN12

longcombi(intn,intr){

longp=1;

for(i=1;

=r;

p=p*(n-i+1)/i;

returnp;

voidpaint(){

intn,r,t;

for(n=0;

n<

=N;

n++){

for(r=0;

r<

=n;

r++){

/*排版设定开始*/

if(r==0){

=(N-n);

}else{

}/*排版设定结束*/

%3d"

combi(n,r));

4.AlgorithmGossip:

三色棋

三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为DutchNationFlag(Dijkstra为荷兰

人),而多数的作者则使用Three-ColorFlag来称之。

假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您

希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上

进行这个动作,而且一次只能调换两个旗子。

在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问

题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到

白色留在中间,遇到红色往后移,如下所示:

只是要让移动次数最少的话,就要有些技巧:

如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。

如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。

如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。

注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;

什幺时候移动结束呢?

一开始

时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗

子就都是红色了,此时就可以结束移动,如下所示:

string.h>

#defineBLUE'

b'

#defineWHITE'

w'

#defineRED'

r'

#defineSWAP(x,y){chartemp;

\

temp=color[x];

\

color[x]=color[y];

color[y]=temp;

}

intmain(){

charcolor[]={'

'

\0'

};

intwFlag=0;

intbFlag=0;

intrFlag=strlen(color)-1;

strlen(color);

%c"

color[i]);

while(wFlag<

=rFlag){

if(color[wFlag]==WHITE)

wFlag++;

elseif(color[wFlag]==BLUE){

SWAP(bFlag,wFlag);

bFlag++;

wFlag++;

rFlag&

&

color[rFlag]==RED)

rFlag--;

SWAP(rFlag,wFlag);

5.AlgorithmGossip:

老鼠走迷官

(一)

说明老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表

示老鼠的行走路径,试以程式求出由入口至出口的路径。

解法老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前

进时退回选择下一个可前进方向,如此在阵列中依序测试四个方向,直到走到出口为止,这是

递回的基本题,请直接看程式应就可以理解。

intvisit(int,int);

intmaze[7][7]={{2,2,2,2,2,2,2},

{2,0,0,0,0,0,2},

{2,0,2,0,2,0,2},

{2,0,0,2,0,2,2},

{2,2,0,2,0,2,2},

{2,2,2,2,2,2,2}};

intstartI=1,startJ=1;

//入口

intendI=5,endJ=5;

//出口

intsuccess=0;

inti,j;

显示迷宫:

7;

i++){

for(j=0;

j<

j++)

if(maze[i][j]==2)

█"

else

if(visit(startI,startJ)==0)

\n没有找到出口!

\n显示路径:

j++){

if(maze[i][j]==2)

elseif(maze[i][j]==1)

◇"

intvisit(inti,intj){

maze[i][j]=1;

if(i==endI&

j==endJ)

success=1;

if(success!

=1&

maze[i][j+1]==0)visit(i,j+1);

maze[i+1][j]==0)visit(i+1,j);

maze[i][j-1]==0)visit(i,j-1);

maze[i-1][j]==0)visit(i-1,j);

=1)

maze[i][j]=0;

returnsuccess;

6.AlgorithmGossip:

老鼠走迷官

(二)

说明由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢?

解法求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退

回上一格重新选择下一个位置继续递回就可以了,比求出单一路径还简单,我们的程式只要作

一点修改就可以了。

voidvisit(int,int);

intmaze[9][9]={{2,2,2,2,2,2,2,2,2},

{2,0,0,0,0,0,0,0,2},

{2,0,2,2,0,2,2,0,2},

{2,0,2,0,0,2,0,0,2},

{2,0,2,0,2,0,2,0,2},

{2,0,0,0,0,0,2,0,2},

{2,2,0,2,2,0,2,2,2},

{2,2,2,2,2,2,2,2,2}};

intendI=7,endJ=7;

i++){

visit(startI,startJ);

voidvisit(inti,intj){

intm,n;

j==endJ){

for(m=0;

m<

9;

m++){

n++)

if(maze[m][n]==2)

elseif(maze[m][n]==1)

if(maze[i][j+1]==0)visit(i,j+1);

if(maze[i+1][j]==0)visit(i+1,j);

if(maze[i][j-1]==0)visit(i,j-1);

if(maze[i-1][j]==0)visit(i-1,j);

7.AlgorithmGossip:

骑士走棋盘

说明骑士旅游(Knighttour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出

已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位

置?

解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,

一个聪明的解法由J.C.Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路

就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。

」,使用这个

方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

intboard[8][8]={0};

intstartx,starty;

输入起始点:

%d%d"

startx,&

starty);

if(travel(startx,starty)){

游历完成!

游历失败!

8;

j++){

%2d"

board[i][j]);

putchar('

\n'

inttravel(intx,inty){

//对应骑士可走的八个方向

intktmove1[8]={-2,-1,1,2,2,1,-1,-2};

intktmove2[8]={1,2,2,1,-1,-2,-2,-1};

//测试下一步的出路

intnexti[8]={0};

intnextj[8]={0};

//记录出路的个数

intexists[8]={0};

inti,j,k,m,l;

inttmpi,tmpj;

intcount,min,tmp;

i=x;

j=y;

board[i][j]=1;

for(m=2;

=64;

for(l=0;

l<

l++)

exists[l]=0;

l=0;

//试探八个方向

for(k=0;

k<

k++){

tmpi=i+ktmove1[k];

tmpj=j+ktmove2[k];

//如果是边界了,不可走

if(tmpi<

0||tmpj<

0||tmpi>

7||tmpj>

7)

continue;

//如果这个方向可走,记录下来

if(board[tmpi][tmpj]==0){

nexti[l]=tmpi;

nextj[l]=tmpj;

//可走的方向加一个

l++;

count=l;

//如果可走的方向为0个,返回

if(count==0){

elseif(count==1){

//只有一个可走的方向

//所以直接是最少出路的方向

min=0;

//找出下一个位置的出路数

count;

l++){

tmpi=nexti[l]+ktmove1[k];

tmpj=nextj[l]+ktmove2[k];

0||

tmpi>

7){

if(board[tmpi][tmpj]==0)

exists[l]++;

tmp=exists[0];

//从可走的方向中寻找最少出路的方向

for(l=1;

if(exists[l]<

tmp){

tmp=exists[l];

min=l;

//走最少出路的方向

i=nexti[min];

j=nextj[min];

board[i][j]=m;

return1;

8.AlgorithmGossip:

八皇后

说明西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八

个皇后如何相安无事的放置在棋盘上,1970年与1971年,E.W.Dijkstra与N.Wirth曾经用这个问

题来讲解程式设计之技巧。

解法关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?

在八个皇后的问题中,

不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方

法称为分支修剪。

#defineN8

intcolumn[N+1];

//同栏是否有皇后,1表示有

intrup[2*N+1];

//右上至左下是否有皇后

intlup[2*N+1];

//左上至右下是否有皇后

intqueen[N+1]={0};

intnum;

//解答编号

voidbacktrack(int);

//递回求解

num=0;

column[i]=1;

=2*N;

rup[i]=lup[i]=1;

backtrack

(1);

voidshowAnswer(){

intx,y;

\n解答%d\n"

++num);

for(y=1;

y<

y++){

for(x=1;

x<

x++){

if(queen[y]==x){

Q"

."

voidbacktrack(inti){

intj;

if(i>

N){

showAnswer();

for(j=1;

if(column[j]==1&

rup[i+j]==1&

lup[i-j+N]==1){

queen[i]=j;

//设定为占用

column[j]=rup[i+j]=lup[i-j+N]=0;

backtrack(i+1);

column[j]=rup[i+j]=lup[i-j+N]=1;

9.AlgorithmGossip:

八枚银币

说明现有八枚银币abcdefgh,已知其中一枚是假币,其重量不同于真币,但不知是较轻或

较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。

解法单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回

圈比较来求解,我们可以使用决策树(decisiontree),使用分析与树状图来协助求解。

一个简单

的状况是这样的,我们比较a+b+c与d+e+f,如果相等,则假币必是g或h,我们先比较g或h哪个

较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻

而g是真币,则h假币的重量比真币轻。

time.h>

voidcompare(int[],int,int,int);

voideightcoins(int[]);

intcoins[8]={0};

srand(time(NULL));

coins[i]=10;

\n输入假币重量(比10大或小):

i);

coins[rand()%8]=i;

eightcoins(coins);

\n\n列出所有钱币重量:

coins[i]);

voidcompare(intcoins[],inti,intj,intk){

if(coins[i]>

coins[k])

\n假币%d较重"

i+1);

\n假币%d较轻"

j+1);

voideightco

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 金融投资

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1