java经典算法Word下载.docx
《java经典算法Word下载.docx》由会员分享,可在线阅读,更多相关《java经典算法Word下载.docx(161页珍藏版)》请在冰豆网上搜索。
hanoi(n,'
A'
'
B'
C'
return0;
}所需次数为:
2-1=184********709551615为5.05390248594782e+16年,也就是约5000世纪
2.AlgorithmGossip:
费式数列
Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:
「若有一只免子每个月生一只小免
子,一个月后小免子也开始生产。
起初只有一只免子,一个月后就有两只免子,二个月后有三
只免子,三个月后有五只免子(小免子投入生产)......。
如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生
产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例
如以下:
1、1、2、3、5、8、13、21、34、55、89......
解法
依说明,我们可以将费氏数列定义为以下:
fn=fn-1+fn-2
fn=n
ifn>
1
ifn=0,1
stdlib.h>
#defineN20
intmain(void){
intFib[N]={0};
inti;
Fib[0]=0;
Fib[1]=1;
for(i=2;
i<
N;
i++)
Fib[i]=Fib[i-1]+Fib[i-2];
for(i=0;
%d"
Fib[i]);
\n"
}
3.巴斯卡三角形
#defineN12
longcombi(intn,intr){
longp=1;
for(i=1;
=r;
p=p*(n-i+1)/i;
returnp;
voidpaint(){
intn,r,t;
for(n=0;
n<
=N;
n++){
for(r=0;
r<
=n;
r++){
/*排版设定开始*/
if(r==0){
=(N-n);
}else{
}/*排版设定结束*/
%3d"
combi(n,r));
4.AlgorithmGossip:
三色棋
三色旗的问题最早由E.W.Dijkstra所提出,他所使用的用语为DutchNationFlag(Dijkstra为荷兰
人),而多数的作者则使用Three-ColorFlag来称之。
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您
希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上
进行这个动作,而且一次只能调换两个旗子。
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来作辅助,问
题的解法很简单,您可以自己想像一下在移动旗子,从绳子开头进行,遇到蓝色往前移,遇到
白色留在中间,遇到红色往后移,如下所示:
只是要让移动次数最少的话,就要有些技巧:
如果图中W所在的位置为白色,则W+1,表示未处理的部份移至至白色群组。
如果W部份为蓝色,则B与W的元素对调,而B与W必须各+1,表示两个群组都多了一个元素。
如果W所在的位置是红色,则将W与R交换,但R要减1,表示未处理的部份减1。
注意B、W、R并不是三色旗的个数,它们只是一个移动的指标;
什幺时候移动结束呢?
一开始
时未处理的R指标会是等于旗子的总数,当R的索引数减至少于W的索引数时,表示接下来的旗
子就都是红色了,此时就可以结束移动,如下所示:
string.h>
#defineBLUE'
b'
#defineWHITE'
w'
#defineRED'
r'
#defineSWAP(x,y){chartemp;
\
temp=color[x];
\
color[x]=color[y];
color[y]=temp;
}
intmain(){
charcolor[]={'
'
\0'
};
intwFlag=0;
intbFlag=0;
intrFlag=strlen(color)-1;
strlen(color);
%c"
color[i]);
while(wFlag<
=rFlag){
if(color[wFlag]==WHITE)
wFlag++;
elseif(color[wFlag]==BLUE){
SWAP(bFlag,wFlag);
bFlag++;
wFlag++;
rFlag&
&
color[rFlag]==RED)
rFlag--;
SWAP(rFlag,wFlag);
5.AlgorithmGossip:
老鼠走迷官
(一)
说明老鼠走迷宫是递回求解的基本题型,我们在二维阵列中使用2表示迷宫墙壁,使用1来表
示老鼠的行走路径,试以程式求出由入口至出口的路径。
解法老鼠的走法有上、左、下、右四个方向,在每前进一格之后就选一个方向前进,无法前
进时退回选择下一个可前进方向,如此在阵列中依序测试四个方向,直到走到出口为止,这是
递回的基本题,请直接看程式应就可以理解。
intvisit(int,int);
intmaze[7][7]={{2,2,2,2,2,2,2},
{2,0,0,0,0,0,2},
{2,0,2,0,2,0,2},
{2,0,0,2,0,2,2},
{2,2,0,2,0,2,2},
{2,2,2,2,2,2,2}};
intstartI=1,startJ=1;
//入口
intendI=5,endJ=5;
//出口
intsuccess=0;
inti,j;
显示迷宫:
7;
i++){
for(j=0;
j<
j++)
if(maze[i][j]==2)
█"
else
if(visit(startI,startJ)==0)
\n没有找到出口!
\n显示路径:
j++){
if(maze[i][j]==2)
elseif(maze[i][j]==1)
◇"
intvisit(inti,intj){
maze[i][j]=1;
if(i==endI&
j==endJ)
success=1;
if(success!
=1&
maze[i][j+1]==0)visit(i,j+1);
maze[i+1][j]==0)visit(i+1,j);
maze[i][j-1]==0)visit(i,j-1);
maze[i-1][j]==0)visit(i-1,j);
=1)
maze[i][j]=0;
returnsuccess;
6.AlgorithmGossip:
老鼠走迷官
(二)
说明由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不只一条,如何求出所有的路径呢?
解法求所有路径看起来复杂但其实更简单,只要在老鼠走至出口时显示经过的路径,然后退
回上一格重新选择下一个位置继续递回就可以了,比求出单一路径还简单,我们的程式只要作
一点修改就可以了。
voidvisit(int,int);
intmaze[9][9]={{2,2,2,2,2,2,2,2,2},
{2,0,0,0,0,0,0,0,2},
{2,0,2,2,0,2,2,0,2},
{2,0,2,0,0,2,0,0,2},
{2,0,2,0,2,0,2,0,2},
{2,0,0,0,0,0,2,0,2},
{2,2,0,2,2,0,2,2,2},
{2,2,2,2,2,2,2,2,2}};
intendI=7,endJ=7;
i++){
visit(startI,startJ);
voidvisit(inti,intj){
intm,n;
j==endJ){
for(m=0;
m<
9;
m++){
n++)
if(maze[m][n]==2)
elseif(maze[m][n]==1)
if(maze[i][j+1]==0)visit(i,j+1);
if(maze[i+1][j]==0)visit(i+1,j);
if(maze[i][j-1]==0)visit(i,j-1);
if(maze[i-1][j]==0)visit(i-1,j);
7.AlgorithmGossip:
骑士走棋盘
说明骑士旅游(Knighttour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出
已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位
置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,
一个聪明的解法由J.C.Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路
就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。
」,使用这个
方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。
intboard[8][8]={0};
intstartx,starty;
输入起始点:
%d%d"
startx,&
starty);
if(travel(startx,starty)){
游历完成!
游历失败!
8;
j++){
%2d"
board[i][j]);
putchar('
\n'
inttravel(intx,inty){
//对应骑士可走的八个方向
intktmove1[8]={-2,-1,1,2,2,1,-1,-2};
intktmove2[8]={1,2,2,1,-1,-2,-2,-1};
//测试下一步的出路
intnexti[8]={0};
intnextj[8]={0};
//记录出路的个数
intexists[8]={0};
inti,j,k,m,l;
inttmpi,tmpj;
intcount,min,tmp;
i=x;
j=y;
board[i][j]=1;
for(m=2;
=64;
for(l=0;
l<
l++)
exists[l]=0;
l=0;
//试探八个方向
for(k=0;
k<
k++){
tmpi=i+ktmove1[k];
tmpj=j+ktmove2[k];
//如果是边界了,不可走
if(tmpi<
0||tmpj<
0||tmpi>
7||tmpj>
7)
continue;
//如果这个方向可走,记录下来
if(board[tmpi][tmpj]==0){
nexti[l]=tmpi;
nextj[l]=tmpj;
//可走的方向加一个
l++;
count=l;
//如果可走的方向为0个,返回
if(count==0){
elseif(count==1){
//只有一个可走的方向
//所以直接是最少出路的方向
min=0;
//找出下一个位置的出路数
count;
l++){
tmpi=nexti[l]+ktmove1[k];
tmpj=nextj[l]+ktmove2[k];
0||
tmpi>
7){
if(board[tmpi][tmpj]==0)
exists[l]++;
tmp=exists[0];
//从可走的方向中寻找最少出路的方向
for(l=1;
if(exists[l]<
tmp){
tmp=exists[l];
min=l;
//走最少出路的方向
i=nexti[min];
j=nextj[min];
board[i][j]=m;
return1;
8.AlgorithmGossip:
八皇后
说明西洋棋中的皇后可以直线前进,吃掉遇到的所有棋子,如果棋盘上有八个皇后,则这八
个皇后如何相安无事的放置在棋盘上,1970年与1971年,E.W.Dijkstra与N.Wirth曾经用这个问
题来讲解程式设计之技巧。
解法关于棋盘的问题,都可以用递回求解,然而如何减少递回的次数?
在八个皇后的问题中,
不必要所有的格子都检查过,例如若某列检查过,该该列的其它格子就不用再检查了,这个方
法称为分支修剪。
#defineN8
intcolumn[N+1];
//同栏是否有皇后,1表示有
intrup[2*N+1];
//右上至左下是否有皇后
intlup[2*N+1];
//左上至右下是否有皇后
intqueen[N+1]={0};
intnum;
//解答编号
voidbacktrack(int);
//递回求解
num=0;
column[i]=1;
=2*N;
rup[i]=lup[i]=1;
backtrack
(1);
voidshowAnswer(){
intx,y;
\n解答%d\n"
++num);
for(y=1;
y<
y++){
for(x=1;
x<
x++){
if(queen[y]==x){
Q"
."
voidbacktrack(inti){
intj;
if(i>
N){
showAnswer();
for(j=1;
if(column[j]==1&
rup[i+j]==1&
lup[i-j+N]==1){
queen[i]=j;
//设定为占用
column[j]=rup[i+j]=lup[i-j+N]=0;
backtrack(i+1);
column[j]=rup[i+j]=lup[i-j+N]=1;
9.AlgorithmGossip:
八枚银币
说明现有八枚银币abcdefgh,已知其中一枚是假币,其重量不同于真币,但不知是较轻或
较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。
解法单就求假币的问题是不难,但问题限制使用最少的比较次数,所以我们不能以单纯的回
圈比较来求解,我们可以使用决策树(decisiontree),使用分析与树状图来协助求解。
一个简单
的状况是这样的,我们比较a+b+c与d+e+f,如果相等,则假币必是g或h,我们先比较g或h哪个
较重,如果g较重,再与a比较(a是真币),如果g等于a,则g为真币,则h为假币,由于h比g轻
而g是真币,则h假币的重量比真币轻。
time.h>
voidcompare(int[],int,int,int);
voideightcoins(int[]);
intcoins[8]={0};
srand(time(NULL));
coins[i]=10;
\n输入假币重量(比10大或小):
i);
coins[rand()%8]=i;
eightcoins(coins);
\n\n列出所有钱币重量:
coins[i]);
voidcompare(intcoins[],inti,intj,intk){
if(coins[i]>
coins[k])
\n假币%d较重"
i+1);
\n假币%d较轻"
j+1);
voideightco