静电纺丝在水处理中的应用Word格式文档下载.docx

上传人:b****3 文档编号:18321140 上传时间:2022-12-15 格式:DOCX 页数:10 大小:26.25KB
下载 相关 举报
静电纺丝在水处理中的应用Word格式文档下载.docx_第1页
第1页 / 共10页
静电纺丝在水处理中的应用Word格式文档下载.docx_第2页
第2页 / 共10页
静电纺丝在水处理中的应用Word格式文档下载.docx_第3页
第3页 / 共10页
静电纺丝在水处理中的应用Word格式文档下载.docx_第4页
第4页 / 共10页
静电纺丝在水处理中的应用Word格式文档下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

静电纺丝在水处理中的应用Word格式文档下载.docx

《静电纺丝在水处理中的应用Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《静电纺丝在水处理中的应用Word格式文档下载.docx(10页珍藏版)》请在冰豆网上搜索。

静电纺丝在水处理中的应用Word格式文档下载.docx

分配任务;

2.12月11日-12月18日:

查询资料、完成论文;

3.12月19日-12月21日:

论文答辩。

四、基本要求

1•具体题目可选给定范围的一种,一人一题。

2•符合格式要求,字数5000-10000。

3•论文电子档以附件形式发送至邮箱,并在主题注明:

学号、姓名、论文题目。

教研室主任签名:

2012年11月5日

摘要

根据静电纺丝采用的聚合物原料的类型、静电纺丝制备的纳米纤维的特殊结构

的种类、制备有序排列的纳米纤维的方法以及制备三维结构纳米纤维的进展4方面

对静电纺丝技术进行了叙述,归纳了静电纺丝技术在水处理中微粒物质的、重金属污染物的去除和污染物检测方面的应用。

认为目前限制静电纺丝技术发展有2个主要问题,即没有明确的理论指导,一些原理尚未搞清;

制备的纳米纤维产量低下,难以工程化、规模化。

关键词:

静电纺丝;

纳米纤维;

特殊结构;

水处理

弓I言

1静电纺丝技术2.

1.2特殊结构的纳米纤维3

1.3有序排列的纳米纤维3

1.4三维结构的纳米纤维4.

2在水处理中的应用5.

2.1微粒物质的处理5.

2.2重金属污染物的处理6.

2.3污染物检测7..

3结论8..

参考文献9.

引言

静电纺丝是现有唯一的可以连续制备的、直径低至几纳米纤维的技术⑴。

该技

术应用广泛,可以采用天然聚合物、共混聚合物和带有发色团、纳米微粒或者活性基团的聚合物制备具有各类应用前景的纳米纤维,并且通过改变静电纺丝的参数

可以制备具有特殊结构的纤维,如多孔纤维、核壳纤维、中空纤维、有序排列和三维结构的纤维等。

静电纺丝技术由Formhals在1934年提出,并申请了专利[2]。

静电纺丝的原理是:

在注射器中的聚合物溶液或者熔体由于受到外加电场的作用,克服自身的表

面张力,从喷丝针头喷出形成喷射细流,细流在喷射过程中溶剂蒸发或者熔体凝固最终在接收装置上形成纤维。

影响静电纺丝的因素有很多:

一是聚合物溶液或者熔体的特性的影响,包括

聚合物的种类,聚合物的分子构造和聚合物的相对分子质量,聚合物的极性、表

面张力和溶剂的蒸发速率以及聚合物的粘稠度(含量)、弹性和电导率;

二是试

验的操作条件的影响,包括试验中的电场强度,试验装置各部件的选择,喷丝针头与接收装置之间的距离,喷丝针头的长度与直径以及聚合物溶液或熔体的输送速度度;

三是外在环境的影响,包括试验温度和湿度。

本文根据静电纺丝采用的聚合物原料的类型、静电纺丝制备的纳米纤维的特殊结构的种类、制备有序排列的纳米纤维的方法以及制备三维纳米纤维的进展4方面

对静电纺丝进行介绍,并归纳了静电纺丝技术在水处理中的应用。

1静电纺丝技术

1.1聚合物溶液或者熔体的类型

原则上,只要将溶液或者熔体参数和操作参数正确、适当地调整,所有可溶或者可熔的聚合物都可以通过静电纺丝制成纤维,所以经验对于静电纺丝试验的

成功与否相当重要。

本文将静电纺丝采用的聚合物分为4类进行讨论:

生物聚合

物和改性生物聚合物、水溶性聚合物、生物可降解聚合物、有机可溶聚合物以及熔融聚合物。

目前已经有许多生物聚合物、改性生物聚合物以及与有机聚合物混合的生物聚合物静电纺丝为纳米纤维。

其中静电纺丝最为广泛的生物聚合物是未来在组织工程中很有应用前景的胶原蛋白,最佳条件下,其静电纺丝纤维的直径可以达到200〜500nmP]。

其它蛋白质或者酶如酪蛋白、脂肪酶和纤维素酶在与人工合成的聚合物混合后也可以静电纺丝为纤维[4]。

由生物聚合物静电纺丝成的纳米纤维由于其生物适应性,因而可以被广泛的应用在伤口包扎、抗菌等领域。

作为天然伤口愈合物质

的纤维蛋白原可以静电纺丝成直径为0.08〜1.2卩m的纤维[5];

同样,可以用于伤口包扎的壳聚糖也可以静电纺丝成纯物质或者混合物⑹。

值得注意的是,从壳聚

糖和聚乙烯醇(PVA)的混合物中可以静电纺丝出具有抗菌作用的纤维⑺。

水溶性聚合物如聚氧化乙烯(PEO)、PVA、聚丙烯酸(PAA)、聚丙烯酰胺(PAM)、聚乙烯吡咯烷酮(PVP)和羟丙基纤维素(HPC)都是静电纺丝的良好的原料。

通过改变pH、温度或者添加表面活性剂和其它溶剂(如乙醇)可以改变上述材料的水溶性。

水溶性聚合物的静电纺丝纤维与水接触后降解迅速,这可能为生物医学方面的应用提供条件。

目前应用最为广泛的原料主要是PEO和Pva[8]。

生物可降解聚合物如脂肪族聚酯、聚酸酐和聚磷腈等,因为其生物可降解性而在生产、生活中有着广泛的应用前景,主要集中在药剂和生物工程的应用上。

肪族聚酯(PLA)作为典型的生物可降解聚合物已经成功通过静电纺丝制备出来[9]。

而其它可生物降解聚合物关于静电纺丝的内容在文献中所述不多。

用熔融的聚合物作为静电纺丝的原料时避免了溶剂的使用,这样无需考虑纤

维形成时的溶剂回收和溶剂引起的火灾,也无需回收残余的溶剂。

这种方法比较环保,生产效率也比较高,但是缺陷是静电纺丝制备的纤维的直径都在400nm以上,

而且直径的分布范围也比较小

到目前为止,能作为熔融静电纺丝的原料有聚乙烯(PE)、聚丙烯(PP)

、聚酰胺12(PA12)、聚己酸内酯(PCL)、聚酯(PET)和聚氨酯(PU)[10],最新的进展中,小形信男设计了一种新颖的装置:

运用激光从远处照射于高分子棒上,棒的一部分变成熔体,再加高电压于熔融体上,这样制得的纤维直

径控制在1卩m以下[11]。

1.2特殊结构的纳米纤维

目前由静电纺丝制备的纳米纤维的特殊结构主要有多孔结构、核壳结构和中空管状结构。

特殊结构的纳米纤维在一些领域具有相当大的应用前景,如多孔结构的纳米纤维因为具有大的比较面积而特别适用作滤膜或者催化材料,核壳结构与中

空管状结构在药物输送和释放领域具有优势。

有2种方法可以制备多孔结构的纳米纤维:

一是在湿度很大的条件下进行静电纺丝试验,环境中湿度很大,小水滴会从空气中沉降到静电纺丝的针管上,而这

些小水滴会在纤维凝固时形成小孔,此方法可以通过改变湿度来调节空隙的大小和密度[12];

二是在制备由共混原料组成的纳米纤维时,有选择性的减少一种组分,

Wendorff等人观测了随着减少PLA-PVP共混物中的一种含量时所制得的纤维的结构变化,发现当等量的PLA、PVP配比成的静电纺丝溶液制得的纤维的空隙最大[13]。

核壳结构的纳米纤维可以通过一种改进的静电纺丝装置进行制备,该装置中

的纺丝针管包含有2个同轴但内径不同的细管,而2个细管连接着2种不同的原料,从而使制得的纳米纤维具有核壳结构。

中空管状结构的纳米纤维也是通过与制备核壳结构的装置制得的,其制备过程

也类似,不同的是,中空结构是在制备完核壳结构的纤维后将核层的材料通过溶剂溶解,或者高温煅烧等方式去除制得。

目前,Larsen等人用橄榄油或甘油作为核

层,用一种老化的无机物凝胶作为壳层,适用同轴装置制得核壳纤维后,高温煅

烧除去核层物质,得到中空纳米管[14];

Li等人用矿物油作核层,用PVP和Ti(OiPr)4的乙醇溶液作为壳层材料,然后用庚烷溶解核层材料,从而得到中空材料⑹。

1.3有序排列的纳米纤维

传统的静电纺丝装置制备出的纤维通常都呈无序状态,这一特性限制了其在某

些需整齐有序排列纤维的领域的应用,如制备电子或者感光元件等。

所以在这些领域制备有序排列的纳米纤维显得尤为重要。

目前有序排列的纳米纤维主要是通过改变接收装置来制备的,主要方法有滚筒

法、转盘法、平行电极法和磁纺法[15]。

滚筒法用滚筒作为接收电极,在制备过程中,形成的纤维会缠绕在滚筒上,当转速一定时就可以得到平行于转速方向的纳米纤维;

转盘法是滚筒法的改进,当滚筒接收电极薄到像碟盘一样时,由于其边缘尺

度很小,集中了电场,使得静电纺丝出的纳米纤维都吸引到此,而且可以连续收集;

平行电极法是用2个平行的电极作为接受装置,纤维在行进过程中受到静电引力

的作用,被拉直在垂直于电极的方向,形成了平行有序的纳米纤维;

磁纺法的工作原理与平行电极法类似,主要是在传统静电纺丝装置中放了2块平行的磁铁,

在磁场的作用下得到有序排列的纤维[16]。

1.4三维结构的纳米纤维

传统通过静电纺丝技术制备出的纤维都是二维的纳米纤维,而二维纤维的应用范围十分有限,限制了其在组织工程等诸多领域的应用,因此制备三维纳米纤维

对于未来静电纺丝的发展十分必需。

YoshiroYokoyama等人通过结合静电纺丝技术和湿法纺丝技术,以聚羟基乙

酸为原料制备出海绵状的三维纳米纤维,与传统方法制备的聚羟基乙酸纤维相比,

该材料具有低表观密度,多孔等特点[17]。

ParkSukHee等人通过聚合物熔体直接沉积法和静电纺丝法结合以PCL、1,1,

1,3,3,3-六氟环氧丙烷-2-丙醇和胶原质为原料,并用计算机辅助控制一些结构点如孔径、纤维直径,制备出可控三维纳米材料[18]。

2在水处理中的应用

膜技术是一种高效的水处理技术,广泛地应用于饮用水的预处理以及污水、废水的处理中。

与其它分离技术如吸附、蒸馏和萃取相比,膜技术具有低操作成本、高效等特点。

静电纺丝制备的纳米纤维由于其直径小、多孔、大比表面积等特点是

一种很好的膜材料。

2.1微粒物质的处理

通过静电纺丝技术可以制备直径跨度由几纳米到几微米的、连续的纳米纤维,这是传统膜无法比拟的优点,去除杂质十分有效。

Tang用紫外光固化的PVA水凝胶作为阻挡层,静电纺丝制备的纳米PVA作为中间支架材料层,聚对苯二甲酸乙二酯作为底层制备一种复合纳米超滤膜(TF

NC)。

通过试验表明,该膜对水油分离具有很好的污垢热阻能力[19]。

Beatriz等人制备出具有良好机械性能的聚对苯二甲酸乙二酯纳米材料,并将

其作为膜应用到苹果汁净化处理中。

发现该材料有良好的流通性,处理时间比传统的过滤处理快接近20倍,并且采用该材料的过滤方法不用添加澄清剂,这样既减

少成本又不会使果汁失香,从试验结果来看,这种新材料在果汁处理行业相当有应用前景[20]。

YoonKyunghwan等人用聚对苯二甲酸乙二酯作为基体,用静电纺丝的不同

配比纳米聚丙烯腈(PAN)作为中间支架材料,用壳聚糖作为覆盖材料制备一种新型膜,并将其应用于过滤处理,发现该膜比市售的纳滤膜流通率好、效率高。

RenugaGopal等人用聚砜作为原料静电纺丝成膜,并用该膜分别处理不同尺寸的细微粒,表明该材料在处理细微粒方面有很好的效果,见表2-1[21]。

表2-1聚砜静电纺丝成膜对微粒的去除情况

Table2-1Removalrateofparticlebyelectrospinningfiber

通量/kghm-2

粒径/ym

去除率/%

1000〜2500

>

7.0

99

2824

3.0

92

2376

2.0

84

1623

1.0

94

2284

1034

0.5

88

2462

47

736

0.1

89

2772

14

2.2重金属污染物的处理

膜技术的一个难点在于膜应用要具有很强的目标性,针对不同的目标物要使用不同类型、具有不同效果的膜。

而静电纺丝在这方面有很大的优点,静电纺丝技术可以针对目标物采取不同的原料来制备需要的产物,达到预期的效果。

在处理重金属方面,通过静电技术制备的膜具有很好的效果。

SangYimin等人用静电纺丝制备出一种新颖的纳米聚氯乙烯(PVC)膜,

并用多种过滤方法观测该膜去除模拟地下水中的重金属离子如Cu2+、Pb2+和Cd2

+的效果。

结果表明,用增强胶束过滤法对重金属的去除率更高,Cu2+去除率可

以达到73%,Pb2+可以达到82%,而Cd2+更高达91%[22]。

SangYimin还发现在添加铝钒土的情况下,通过上述方法铜离子的

去除率可以达到100%[23]。

HaiderSajjad等人观测了用静电纺丝法自制的壳聚糖膜在水溶液中的金属吸附性。

结果表明,壳聚糖膜在没有丧失自身的生物适应性、生物活性和无毒性的情

况下表现了良好的抗腐蚀性和金属吸附能力,其中铜的吸附数据是现有壳聚糖微

粒吸附值的6倍[24]。

Desai等人用壳聚糖和PEO混合物制备纳米纤维,观测了不同含量、不同相对分子质量2种物质混合对纳米纤维的形成和尺寸的影响,并用不同配比的2种聚

合物来吸附重金属铬,发现在壳聚糖与PEO质量比为90:

10时,吸附量达到最高;

又在此配比条件下,观测了不同脱乙酰度的壳聚糖对吸附重金属铬的影响,发现

在脱乙酰度为80%的条件下,该纳米纤维的吸附量最好[25]o

GarudadhwajHota等人将水铝石纳米材料负载在用静电纺丝制备的用尼龙-6

以及用PCL为原料的聚合物载体上,得到2种亚微米膜,并将制得的膜应用于吸附重金属镉的试验中,发现原有质量分数为0.34mgg-1的镉经过处理后降到了0.

20〜0.21mgg-1[26]。

KiChangSeok等人分别用羊毛角蛋白以及羊毛角蛋白和丝素的混合物作为原料,通过静电纺丝技术制备滤膜,在pH为7,Cu2+的质量分

数为3.49mgg-1的条件下,进行膜吸附试验。

结果发现,30min时间内,用羊毛角蛋白作为原料的膜吸附铜离子为1.65mg-g-1,而用混合物作为原料的膜为2.88mgg-1。

通过解吸附、再吸附试验发现前者的解吸附率为102%、再吸附率61%,后者分别为109%和97%,用混合物制备的膜吸附Cu2+的效果十分明显[27]o

另一方面,通过添加具有光催化氧化的物质,静电纺丝出含有该物质的膜可以

降解一些水体中难去除的污染物。

YangYang等人用酞酸四丁酯和钨酸为原料通过静电纺丝技术制备出一种介孔参杂W6+的二氧化钛材料,通过降解亚甲基蓝溶液,发现该物质有很好的光降解能力[28]oDohSeokJoo等人用静电纺丝法制备出具有光催化特性的TiO2纳米纤维,并用溶胶-凝胶法将TiO2微粒负载在纳米纤维上用来处理印染污染物,试验结果表明该材料对有机污染物有很好的去除效果[29]o

2.3污染物检测

通过静电纺丝技术制备的膜因为可以富集环境中的污染物质还可以应用于环境监测领域。

QiDongjin等人通过经典纺丝技术制备分别以苯乙烯-甲基丙烯酸共聚物、苯乙烯-苯乙烯磺酸共聚物和聚苯乙烯为原料的材料,将它们作为固相萃取法的吸附

剂提取需检测的6种污染物,结果表明,纳米吸附剂具有低成本、低检测限和高精确率等优点[30]o

KrisJSenecel等人将含有羧基官能团的PVC,带有氨基官能团的聚胺和聚亚安酯静电纺丝成膜材料,用于测定人体中的免疫抗体或者环境中有毒污染物质,

该膜材料因为带有特定的功能型官能团,对特定的抗体或者污染物有很高的灵敏度,在环境中的污染物检测上很有应用前景[31]o

3结论

综上所述,静电纺丝作为一种简便的、独特的生产纳米纤维的技术具有广阔的应用前景,其应用涉及环境中饮用水和污水净化、化学中催化作用和医学中的药物释放、伤口包扎、软组织修复等诸多领域。

但是,静电纺丝技术还存在着很多问题,主要有2个:

(1)目前静电纺丝技术还没有明确的理论指导,一些原理尚未搞清;

(2)运用静电纺丝制备的纳米纤维产量低下,难以工程化、规模化。

这些问题限制了静电纺丝技术的发展,但是随着科研工作的不断深入,静电纺丝技术

必将创造更大的市场价值。

参考文献

[1]师奇松,于建香,顾克壮.静电纺丝技术及其应用[J].化学世界,2005(5):

313-316.

[2]AFormals.Processandapparatusforpreparingartificialthreads:

US,1975504[P].1934-10-02.

[3]王培伟,陈宗刚,王红声,等.静电纺壳聚糖/胶原蛋白复合纳米纤维的细胞相容性J].中

国组织工程研究与临床康复,2008,12

(1):

5-9.

[4]小形信男.熔融静电纺丝法介绍J].合成纤维,2008,37(8):

52-56.

[5]WangZhengang,WanLingshu.Enzymeimmobilizationonelectrospunpolymernaofibers:

anoverview[J].JournalofMolecularCatalysisB:

Enzymatic,2009,56(4):

189-195.

[6]XieJiangbing,HeiehYoulo.Ultra-highsurfacefibrousmembranesfromelectrospinningofnaturalproteins:

casinandlipaseenzyme[J].JournalofMaterialsScience,2003,38:

2125-2133.

[7]SMaretschek,AGreiner,TKissel.Electrospunbiodegradablenanofibernonwovensfor

controlledreleaseofproteins[J].JournalofControlledRelease,2008,127

(2):

180-187.

[8]AGreiner,JHWendorff.Electrospinning:

afacinatingmethodforthepreparationofultrathinfibers[J].AngewandteChemie.2006,46:

5670-5703.

[9]鲍杨波,王家俊.电纺丝制备壳聚糖/聚乙烯醇纳米纤维[J].浙江理工大学学报,2008,25

(2):

145-147.

[10]常丽娜,张幼珠,张晓东.静电纺丝工艺参数对丝素/壳聚糖纳米纤维的形貌及直径的

影响[J].合成纤维,2006,35

(2):

14-17.

[11]吴卫星.熔融静电纺丝制备PE/PP纤维的研究[D].天津:

天津大学,2005.

[12]AGreiner,JHWendorff.Biohybridnanosystemswithpolymernanofibersandnanotubes[J].AppliedMicrobiologyandBiotechnology2006,71:

387-393.

[13]GLarsen,RSpertz.Templatingofinorganicandorganicsolidswithelectrospunfinersforthesynthesisoflarge-porematerialswithnearcylindricalpores[J].ChemistryofMaterials,2004,14(10):

1533-1539.

[14]仰大勇,蒋兴宇.静电纺丝制备有序纳米纤维的研究进展[J].合成纤维,2008,37(6):

1

5.

[15]龙云泽,李蒙蒙,尹志华.静电纺丝法制备有序排列的纳米纤维最新进展J].青岛大学

学报,2008,21

(2):

92-99.

[16]DanLi,XiaYounan.Electrospinningofnanofiners:

reinventingthewheel[J].AdvancedMaterials,2004,16(14):

1151-1170.

[17]YYokoyama,SHattori,CYoshikawa,etal.Novelwetelectrospinningsystemfor

fabricationofspongiformnanofiber3-dimensionalfabric[J].MaterialsLetters,2009,63:

54-756.

[18]ParkSukHee,KimTaekGyoung,KimHyoChan,etal.Developmentofdualscalescaffoldsviadirectpolymermeltdepositionandelectrospinningforapplicationsintissueregeneration[J].ActaBiomaterialia,2008(4):

1198-1207.

[19]TangZhaohui,WeiJie.UV-curedpoly(vinylalcohol)ultrafiltrationnanofiberousmembranebasedonelectrospunnanofiberscaffolds[J].JournalofMembraneScience,2009,328(1/2):

1-5.

[20]BreatrizVeleirinho,JALopes-da-Silva.Applicationofelectrospunpoly(ethyleneterep

hthalate)nanofibermattoapplejuiceclarification[J].ProcessBiochemistry,2009,44(3):

35

3-356.

[21]RenugaGopal,SKaur,ChaoYF,etal.Electrospunnanofibrouspolysulfonemembranesaspre-filters:

Particulateremoval[J].JournalJournalofMembraneScience,2007,289(1/2):

210-219.

[22]SangYimin,LiFasheng,GuQingbao,etal.Heavymetalcontaminatedgroundtreatmentbyanovelnanofibermembrane[J].Desalination,2008,223(1/3):

349-360.

[23]SangYimin,GuQingbao,SunTichang,etal.Filtrationbyanovelnanofibermembraneandaluminaadso

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1