控制系统数字仿真与CAD实验Word文件下载.docx

上传人:b****6 文档编号:18231496 上传时间:2022-12-14 格式:DOCX 页数:58 大小:315.07KB
下载 相关 举报
控制系统数字仿真与CAD实验Word文件下载.docx_第1页
第1页 / 共58页
控制系统数字仿真与CAD实验Word文件下载.docx_第2页
第2页 / 共58页
控制系统数字仿真与CAD实验Word文件下载.docx_第3页
第3页 / 共58页
控制系统数字仿真与CAD实验Word文件下载.docx_第4页
第4页 / 共58页
控制系统数字仿真与CAD实验Word文件下载.docx_第5页
第5页 / 共58页
点击查看更多>>
下载资源
资源描述

控制系统数字仿真与CAD实验Word文件下载.docx

《控制系统数字仿真与CAD实验Word文件下载.docx》由会员分享,可在线阅读,更多相关《控制系统数字仿真与CAD实验Word文件下载.docx(58页珍藏版)》请在冰豆网上搜索。

控制系统数字仿真与CAD实验Word文件下载.docx

结果

>

A=

-20-70-100-48

1000

0100

0010

B=

1

0

C=

1144848

D=

z=

-9.4641

-2.5359

-2.0000

p=

-16.0051

-1.5269+0.9247i

-1.5269-0.9247i

-0.9412

k=

1.0000

R=

0.3892

-0.0932-0.3754i

-0.0932+0.3754i

0.7973

P=

H=

[]

程序A=[2.25,-5,-1.25,-0.5;

2.25,-4.25,-1.25,-0.25;

0.25,-0.5,-1.25,-1;

1.25,-1.75,-0.25,-0.75];

B=[4;

2;

0];

C=[0,2,0,2];

D=[0];

[num,den]=ss2tf(A,B,C,D)

[R,P,H]=residue(num,den)>

num=

04.000014.000022.000015.0000

den=

1.00004.00006.25005.25002.2500

-1.0000+1.2247i

-1.0000-1.2247i

-1.5000

-0.5000+0.8660i

-0.5000-0.8660i

4.0000

4.0000

-0.0000

0.0000-2.3094i

0.0000+2.3094i

实验二基于Matlab的微分方程数值解法(2学时)

掌握欧拉法、四阶龙格库塔法的程序编制方法。

对微分方程描述的控制系统,利用欧拉法、二阶龙格-库塔法、四阶龙格-库塔法分别编写M文件,进行数值计算和作图。

1.分别用欧拉法、二阶龙格-库塔法、四阶龙格-库塔法求下面系统的输出响应y(t)在0≤t≤1上,h=0.1时的数值解。

要求保留4位小数,并将三种方法的结果与真解

进行比较。

2.若为

如何编程计算?

1.每次实验应做好实验前的预习和准备;

2.实验后应及时提交仿真程序(M文件与Word文档)、实验结果和图示、实验分析与总结;

3.认真撰写实验报告。

熟悉微分方程数值解法(欧拉法、二阶与四阶龙格-库塔法)。

程序

欧拉法

h=0.1;

disp('

欧拉法求函数的数值解为'

);

y='

y=1;

fort=0:

h:

1

m=y;

disp(y);

y=m-2*m*h;

End

欧拉法求函数的数值解为

y=

0.8000

0.6400

0.5120

0.4096

0.3277

0.2621

0.2097

0.1678

0.1342

0.1074

 

二阶龙格—库塔法

二阶龙格—库塔法函数的数值解为'

k1=-2*y;

k2=-2*(y+k1*h);

y=y+(k1+k2)*h/2;

二阶龙格—库塔法函数的数值解为

0.8200

0.6724

0.5514

0.4521

0.3707

0.3040

0.2493

0.2044

0.1676

0.1374

四阶龙格—库塔法

四阶龙格—库塔法求解函数数值解为'

k2=-2*(y+k1*h/2);

k3=-2*(y+k2*h/2);

k4=-2*(y+k3*h);

y=y+(k1+2*k2+2*k3+k4)*h/6;

end

四阶龙格—库塔法求解函数数值解为

0.8187

0.6703

0.5488

0.4493

0.3679

0.3012

0.2466

0.2019

0.1653

0.1353

真解

函数的离散时刻解为'

y=exp(-2*t);

结果

函数的离散时刻解为

0.1353

如何编程计算?

欧拉法

y=m+m*m*h;

1.1000

1.2210

1.3701

1.5578

1.8005

2.1246

2.5760

3.2397

4.2892

6.1289

k1=y*y;

k2=y*(y+k1*h);

1.1050

1.2338

1.3955

1.6038

1.8816

2.2690

2.8423

3.7649

5.4492

9.2277

k2=y*(y+k1*h/2);

k3=y*(y+k2*h/2);

k4=y*(y+k3*h);

1.1052

1.2343

1.3965

1.6058

1.8855

2.2767

2.8587

3.8047

5.5659

9.7082

实验三基于SIMULINK的控制系统时域分析(2学时)

掌握使用SIMULINK、控制工具箱求解系统的输入和输出响应的仿真方法。

利用SIMULINK工具进行控制系统模型分析、系统设计与仿真的相关原理。

1.分别使用解微分方程方法、控制工具箱、Simulink求解具有如下闭环传递函数的系统的阶跃响应。

2.某小功率随动系统动态结构如图所示,已知:

若系统输入分别为

,试用Simulink分析系统的输出

分别如何?

四.实验要求:

1.熟悉Simulink法进行控制系统时域分析的基本步骤,并与微分方程法、控制工具箱法进行比较;

2.熟悉Simulink法在输入不同信号(单位阶跃、单位斜坡、两阶跃叠加)下的控制系统输出响应实验方法、图形显示。

控制工具箱法

num=[30];

den=[18364010];

sys=tf(num,den);

step(sys);

Grid

解微分方程法

Num=[];

den=[];

[A,B,C,D]=tf2ss(num,den);

建立wffc.m文件

functiondx=wffc(t,x)

u=1;

dx=[-8*x

(1)-36*x

(2)-40*x(3)-10*x(4)+u;

x

(1);

x

(2);

x(3)];

主程序

[t,x]=ode45('

wffc'

[0,20],[0,0,0,0]);

y=30*x(:

4);

plot(t,y);

grid

实验四面向系统结构图的仿真验证(2学时)

从控制系统常见的结构形式拓扑描述入手,掌握面向连续控制系统结构图的计算机仿真方法及其程序实现。

二.实验原理及预习内容:

1.原理:

任何复杂连接结构的线性控制系统都是由一些简单的线性环节组合而成,按照它们之间相互连接的拓扑关系列出连接矩阵,可以得到能清晰地描述复杂连接系统的仿真模型。

2.预习内容:

利用连接矩阵进行复杂控制系统建模的方法和原理。

三.实验步骤:

1.对具有复杂连接闭环结构形式的系统,可用一阶环节作为典型环节,再运用拓扑描述中联接矩阵的表达方法得出此类系统结构的仿真模型;

2.再通过数值积分法求取各环节的动态响应。

注意:

所确定的典型环节中,参数

,以保证系统仿真求解的基本条件。

四.实验内容:

习题3-2.设典型闭环结构控制系统如下图所示,当阶跃输入幅值R=20时,用面向系统结构图的数字仿真法sp3-1.m求取系统的输出响应。

五.实验要求:

1.列出复杂连接闭环系统的仿真程序框图;

2.列出MATLAB程序实现的主要程序,包括输入数据、形成闭环各系统阵、数值积分求解、以及输出结果。

解:

sp3_1.m函数为

b=b/a

(1);

a=a/a

(1);

A=a(2:

n+1);

A=[rot90(rot90(eye(n-1,n)));

-fliplr(A)];

B=[zeros(1,n-1),1]'

;

m1=length(b);

C=[fliplr(b),zeros(1,n-m1)];

Ab=A-B*C*V;

X=X0'

y=0;

t=T0;

N=round((Tf-T0)/h);

fori=1:

N

K1=Ab*X+B*R;

K2=Ab*(X+h*K1/2)+B*R;

K3=Ab*(X+h*K2/2)+B*R;

K4=Ab*(X+h*K3)+B*R;

X=X+h*(K1+2*K2+2*K3+K4)/6;

y=[y,C*X];

t=[t,t(i)+h];

以上程序保存为m文件,文件名sp3_1.m

用sp3_1.m求解过程如下:

在MATLAB语言环境下,输入以下命令语句

a=[0.0160.8643.273.421];

b=[3025];

X0=[0000];

V=2;

n=4;

T0=0;

Tf=10;

h=0.01;

R=20;

sp3_1

[t'

y'

]

plot(t,y)

运行结果为:

ans=

00

0.01000.0054

0.02000.0389

0.03000.1174

0.04000.2502

0.05000.4417

0.06000.6933

0.07001.0045

0.08001.3733

0.09001.7969

0.10002.2717

0.11002.7936

0.12003.3583

0.13003.9608

0.14004.5964

0.15005.2596

0.16005.9453

0.17006.6480

0.18007.3622

0.19008.0826

0.20008.8036

0.21009.5201

0.220010.2267

0.230010.9184

0.240011.5904

0.250012.2380

0.260012.8569

0.270013.4431

0.280013.9926

0.290014.5021

0.300014.9684

0.310015.3889

0.320015.7613

0.330016.0834

0.340016.3539

0.350016.5716

0.360016.7357

0.370016.8459

0.380016.9023

0.390016.9054

0.400016.8560

0.410016.7553

0.420016.6050

0.430016.4070

0.440016.1635

0.450015.8771

0.460015.5506

0.470015.1870

0.480014.7896

0.490014.3621

0.500013.9079

0.510013.4308

0.520012.9349

0.530012.4240

0.540011.9022

0.550011.3734

0.560010.8417

0.570010.3111

0.58009.7855

0.59009.2686

0.60008.7641

0.61008.2756

0.62007.8063

0.63007.3594

0.64006.9379

0.65006.5444

0.66006.1813

0.67005.8509

0.68005.5551

0.69005.2953

0.70005.0731

0.71004.8893

0.72004.7447

0.73004.6398

0.74004.5746

0.75004.5489

0.76004.5624

0.77004.6142

0.78004.7034

0.79004.8286

0.80004.9884

0.81005.1810

0.82005.4044

0.83005.6565

0.84005.9350

0.85006.2374

0.86006.5610

0.87006.9031

0.88007.2608

0.89007.6314

0.90008.0118

0.91008.3991

0.92008.7903

0.93009.1825

0.94009.5727

0.95009.9581

0.960010.3360

0.970010.7037

0.980011.0586

0.990011.3984

1.000011.7207

1.010012.0236

1.020012.3051

1.030012.5634

1.040012.7970

1.050013.0047

1.060013.1854

1.070013.3381

1.080013.4621

1.090013.5571

1.100013.6229

1.110013.6593

1.120013.6667

1.130013.6455

1.140013.5962

1.150013.5198

1.160013.4172

1.170013.2896

1.180013.1384

1.190012.9650

1.200012.7712

1.210012.5587

1.220012.3294

1.230012.0851

1.240011.8281

1.250011.5603

1.260011.2840

1.270011.0013

1.280010.7144

1.290010.4255

1.300010.1367

1.31009.8502

1.32009.5681

1.33009.2924

1.34009.0249

1.35008.7675

1.36008.5220

1.37008.2900

1.38008.0729

1.39007.8722

1.40007.6890

1.41007.5243

1.42007.3791

1.43007.2542

1.44007.1501

1.45007.0673

1.46007.0059

1.47006.9662

1.48006.9480

1.49006.9511

1.50006.9752

1.51007.0197

1.52007.0840

1.53007.1672

1.54007.2684

1.55007.3867

1.56007.5208

1.57007.6694

1.58007.8313

1.59008.0051

1.60008.1892

1.61008.3821

1.62008.5824

1.63008.7882

1.64008.9982

1.65009.2106

1.66009.4238

1.67009.6363

1.68009.8465

1.690010.0529

1.700010.2540

1.710010.4484

1.720010.6349

1.730010.8121

1.740010.9789

1.750011.1343

1.760011.2773

1.770011.4071

1.780011.5229

1.790011.6240

1.800011.7101

1.810011.7807

1.820011.8355

1.830011.8744

1.840011.8973

1.850011.9045

1.860011.8960

1.870011.8722

1.880011.8335

1.890011.7805

1.900011.7138

1.910011.6341

1.920011.5421

1.930011.4389

1.940011.3253

1.950011.2023

1.960011.0711

1.970010.9326

1.980010.7881

1.990010.6387

2.000010.4856

2.010010.3300

2.020010.1730

2.030010.0159

2.04009.8598

2.05009.7059

2.06009.5552

2.07009.4088

2.08009.2677

2.09009.1329

2.10009.0052

2.11008.8856

2.12008.7746

2.13008.6730

2.14008.5815

2.15008.5004

2.16008.4303

2.17008.3714

2.18008.3241

2.19008.2884

2.20008.2645

2.21008.2523

2.22008.2517

2.23008.2625

2.24008.2846

2.25008.3174

2.26008.3606

2.27008.4138

2.28008.4763

2.29008.5475

2.30008.6268

2.31008.7135

2.32008.8067

2.33008.9058

2.34009.0098

2.35009.1179

2.36009.2293

2.37009.3431

2.38009.4584

2.39009.5743

2.40009.6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1