板梁模板支架讲座Word格式文档下载.docx
《板梁模板支架讲座Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《板梁模板支架讲座Word格式文档下载.docx(29页珍藏版)》请在冰豆网上搜索。
2层
层高
转换层
地下一层
1层
2~15层
16层
4.5m
3.5m
3.3m
3.4m
板厚
240mm
180mm
150mm
130mm
梁
高
1000mm
700mm
宽
500mm
2、顶板支撑方案搭设参数的确定
现以转换层为例选择顶板模板支撑方案:
①、由于层高为4.5m,可确定支架搭设高度为4.2m(层高减掉板厚);
现设定支撑架布距为1.2m,则立杆上端伸出顶层横杆中心线至模板支撑点的长度a=层高-板厚-底层横杆至地面距离-整倍的布距-相邻模板背楞的高度;
及a=4.5-0.2-0.1-1.2×
3-0.1=0.5
②、初步确定立杆纵距和横距均为1.2m;
③、模板材料选择竹胶板;
相邻模板的小楞采用50×
100mm2木方,间距为300mm;
顶托梁采用100×
100mm2木方,间距为1200mm。
采用的钢管类型为
48×
3.5。
3、设计计算内容:
1.板底面板强度、挠度和剪力计算;
2.板底木方强度、挠度和剪力计算;
3.木方下面支撑梁(木方或钢管)强度、挠度计算;
4.扣件的抗滑承载力计算;
5.立杆的稳定性计算。
4、计算解析:
力传递过程:
面板-木方-托梁-顶托(或扣件)-立杆
楼板支撑架立面简图
图2楼板支撑架荷载计算单元
采用的钢管类型为
模板面板计算
面板为受弯结构,需要验算其抗弯强度和刚度。
模板面板的按照三跨连续梁计算。
静荷载标准值q1=25.000×
0.200×
1.200+0.350×
1.200=6.420kN/m
注:
钢筋混凝土自重取25kN/m3
活荷载标准值q2=(2.000+1.000)×
1.200=3.600kN/m
倾倒混凝土的荷载标准值:
2kN/m2;
施工均布荷载标准值:
1kN/m2。
面板的截面惯性矩I和截面抵抗矩W分别为:
本算例中,截面惯性矩I和截面抵抗矩W分别为:
W=120.00×
1.80×
1.80/6=64.80cm3;
I=120.00×
1.80/12=58.32cm4;
(1)抗弯强度计算
f=M/W<
[f]
其中f——面板的抗弯强度计算值(N/mm2);
M——面板的最大弯距(N.mm);
W——面板的净截面抵抗矩;
[f]——面板的抗弯强度设计值,取15.00N/mm2;
M=0.100ql2
其中q——荷载设计值(kN/m);
经计算得到M=0.100×
(1.2×
6.420+1.4×
3.600)×
0.300×
0.300=0.115kN.m
经计算得到面板抗弯强度计算值f=0.115×
1000×
1000/64800=1.770N/mm2
面板的抗弯强度验算f<
[f],满足要求!
(2)抗剪计算[可以不计算]
T=3Q/2bh<
[T]
此公式为木结构抗剪公式依照构件截面是长方形的简化
其中最大剪力Q=0.600×
0.300=2.294kN
截面抗剪强度计算值T=3×
2294.0/(2×
1200.000×
18.000)=0.159N/mm2
截面抗剪强度设计值[T]=1.40N/mm2
抗剪强度验算T<
[T],满足要求!
(3)挠度计算
v=0.677ql4/100EI<
[v]=l/250
面板最大挠度计算值v=0.677×
6.420×
3004/(100×
6000×
583200)=0.101mm
面板的最大挠度小于300.0/250,满足要求!
模板支撑木方的计算
木方按照均布荷载下连续梁计算。
1.荷载的计算
(1)钢筋混凝土板自重(kN/m):
q11=25.000×
0.300=1.500kN/m
(2)模板的自重线荷载(kN/m):
q12=0.350×
0.300=0.105kN/m
(3)活荷载为施工荷载标准值与振倒混凝土时产生的荷载(kN/m):
经计算得到,活荷载标准值q2=(1.000+2.000)×
0.300=0.900kN/m
静荷载q1=1.2×
1.500+1.2×
0.105=1.926kN/m
活荷载q2=1.4×
0.900=1.260kN/m
2.木方的计算
按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下:
均布荷载q=3.823/1.200=3.186kN/m
最大弯矩M=0.1ql2=0.1×
3.19×
1.20×
1.20=0.459kN.m
最大剪力Q=0.6×
1.200×
3.186=2.294kN
最大支座力N=1.1×
3.186=4.206kN
木方的截面力学参数为
W=5.00×
10.00×
10.00/6=83.33cm3;
I=5.00×
10.00/12=416.67cm4;
(1)木方抗弯强度计算
抗弯计算强度f=0.459×
106/83333.3=5.51N/mm2
木方的抗弯计算强度小于13.0N/mm2,满足要求!
(2)木方抗剪计算[可以不计算]
最大剪力的计算公式如下:
Q=0.6ql
截面抗剪强度必须满足:
截面抗剪强度计算值T=3×
2294/(2×
50×
100)=0.688N/mm2
截面抗剪强度设计值[T]=1.30N/mm2
木方的抗剪强度计算满足要求!
(3)木方挠度计算
最大变形v=0.677×
1.605×
1200.04/(100×
9500.00×
4166666.8)=0.569mm
木方的最大挠度小于1200.0/250,满足要求!
托梁的计算
托梁按照集中与均布荷载下多跨连续梁计算。
集中荷载取木方的支座力P=4.206kN
均布荷载取托梁的自重q=0.096kN/m。
托梁计算简图
托梁弯矩图(kN.m)
托梁变形图(mm)
托梁剪力图(kN)
经过计算得到最大弯矩M=2.095kN.m
经过计算得到最大支座F=18.684kN
经过计算得到最大变形V=2.6mm
顶托梁的截面力学参数为
W=10.00×
10.00/6=166.67cm3;
I=10.00×
10.00/12=833.33cm4;
(1)顶托梁抗弯强度计算
抗弯计算强度f=2.095×
106/166666.7=12.57N/mm2
顶托梁的抗弯计算强度小于13.0N/mm2,满足要求!
(2)顶托梁抗剪计算[可以不计算]
10214/(2×
100×
100)=1.532N/mm2
顶托梁的抗剪强度计算不满足要求!
(3)顶托梁挠度计算
最大变形v=2.6mm
顶托梁的最大挠度小于1200.0/250,满足要求!
立杆的稳定性计算
不考虑风荷载时,立杆的稳定性计算公式
W——立杆净截面抵抗矩(cm3);
W=5.08
——钢管立杆抗压强度计算值(N/mm2);
[f]——钢管立杆抗压强度设计值,[f]=205.00N/mm2;
㈠、N为立杆的轴心压力设计值(kN),如果不考虑风荷载时,立杆的轴向压力设计值计算公式
N=1.2NG+1.4NQ
1、式中NG为静荷载,是模板及支架自重、新浇混凝土自重与钢筋自重标准值产生的轴向力总和。
即NG=NG1+NG2+NG3=8.259kN
其中:
(1)脚手架的自重(kN):
NG1=0.129×
4.300=0.555kN
(2)模板的自重(kN):
NG2=0.350×
1.200=0.504kN
(3)钢筋混凝土楼板自重(kN):
NG3=25.000×
1.200=7.200kN
2、NQ为活荷载,是施工人员及施工设备荷载标准值、振捣混凝土产生的荷载标准值产生的轴向力总和。
即NQ=(1.000+2.000)×
1.200=4.320kN
最后得出N=1.2NG+1.4NQ=1.2×
8.259+1.4×
4.320=15.96kN
㈡、A为支撑立杆(
3.5)净截面面积(cm2);
查表或计算可得A=4.89
㈢、
为轴心受压立杆的稳定系数,由长细比λ=l0/i查表得到;
l0为计算长度(m);
i为计算立杆的截面回转半径(cm);
i=1.58
l0的确定有以下3种公式:
l0=k1uh
(1)
l0=(h+2a)
(2)
l0=k1k2(h+2a)(3)
k1为计算长度附加系数,可查表得到取值为1.167,见下表:
———————————————————————————————————————
步距h(m)h≤0.90.9<
h≤1.21.2<
h≤1.51.5<
h≤2.1
k11.1631.1671.1851.243
———————————————————————————————————————
u为计算长度系数,由搭设高度确定。
可查表得到取值为:
1.75。
见下表
h为支架搭设的步距;
取1.2
a为立杆上端伸出顶层横杆中心线至模板支撑点的长度。
取0.5
k2也为计算长度附加系数,可查表得到取值为1.007,见下表:
H(m)46810121416182025303540
h+2a或u1h(m)
1.351.01.0141.0261.0391.0421.0541.0611.0811.0921.1131.1371.1551.173
1.441.01.0121.0221.0311.0391.0471.0561.0641.0721.0921.1111.1291.149
1.531.01.0071.0151.0241.0311.0391.0471.0551.0621.0791.0971.1141.132
1.621.01.0071.0141.0211.0291.0361.0431.0511.0561.0741.0901.1061.123
1.801.01.0071.0141.0201.0261.0331.0401.0461.0521.0671.0811.0961.111
1.921.01.0071.0121.0181.0241.0301.0351.0421.0481.0621.0761.0901.104
2.041.01.0071.0121.0181.0221.0291.0351.0391.0441.0601.0731.0871.101
2.251.01.0071.0101.0161.0201.0271.0321.0371.0421.0571.0701.0811.094
2.701.01.0071.0101.0161.0201.0271.0321.0371.0421.0531.0661.0781.091
《扣件式规范》给出的模板支架轴向力设计值N的计算式(5.6.2)与用于脚手架计算的式(5.3.2)是相同的,前者取l01=h+2a,而后者取l01=k1uh。
当支架的构造和约束条件与双排脚手架相同时,则l01应当与l0相同,即l01=l0,则有:
h+2a=k2uh
a=h(k1u-1)/2
当l01≥l0时,其K≥2.0,可满足安全要求;
当l01 <l0时,其K<2.0,则安全度不够。
当ku=1.155×
(1.5⌒1.8)=1.732⌒2.079代入上述公式时,要使得按l01=h+2a计算的支架立杆的设计稳定承载能力具有K>2.0的安全度,就必须使a≥(0.367⌒0.54)h,即当h=1.8m时,需让a≥0.66⌒0.97m,而这又恰与限制a的初衷相违背。
之所以出现这一问题,就是在借用英国标准时,忽视了必须满足K≥2.0的要求。
按照《扣件式规范》的计算规定,在a<(0.367⌒0.54)h时,就会出现不能满足K≥2.0要求的结果。
鉴于这一问题,在计算模板支架时,需要对l01=h+2a作必要的调整,以确保使用安全。
两类构架梁板模板支架立杆计算长度l0的确定
按两类构架的情况,分别采用相适合的支架立杆计算长度l0的计算式:
几何不可变杆系结构支架:
l0=k1k2l01=k1k2(h+2a)
因而使h+2a≤u’h
故片a≤0.5(u’-1)h
非几何不可变杆系结构支架:
l0‘=k1k2u’h
u’=m1m2u1
以上式中
k1----考虑K≥2.0要求的立杆计算长度的调整系数,其对于l0的调整相当于对对抗力f的调整,《扣件式规范》所给k1=1.155的取值偏低,应按下表选用:
缺表
k2---考虑搭设高度影响的立杆计算长度的调整系数。
因只调整支架计算高度H0>4mm的高支架,故
u’---非几何不可变杆系结构支架立杆的计算长度系数,即计算扣件式钢管脚手架单肢立杆稳定性的u1c值,分别按角立杆、边立杆和中立杆给出。
u1----将非几何不可变杆系结构支架的立杆视为有侧移框架柱,按其两端交汇杆件线刚度的比值K1、K2确定的计算长度系数的理论值。
此处有表
m1、m2----考虑扣件式钢管脚手架稳定约束条件中连墙件和纵向水平杆作用的调整系数,见表。
当支架的边排立杆有附墙连结时,其靠边两排立杆按实际的附墙连结情况情况考虑,其内各排立杆按无附墙连结考虑;
当支架边排无附墙壁连结时,横向立杆排数≥学课排的支架按两面三刀步三跨边墙考虑,横向立杆排数≤4排的支架按三步三跨连墙考虑。
公式
(1)的计算结果:
=165.57N/mm2,立杆的稳定性计算
<
公式
(2)的计算结果:
=116.37N/mm2,立杆的稳定性计算
公式(3)的计算结果:
=114.18N/mm2,立杆的稳定性计算<
_
楼板强度的计算
1.计算楼板强度说明
验算楼板强度时按照最不利考虑,楼板的跨度取6.00m,楼板承受的荷载按照线均布考虑。
宽度范围内配筋1级钢筋,配筋面积As=1638.0mm2,fy=210.0N/mm2。
板的截面尺寸为b×
h=4200mm×
130mm,截面有效高度h0=110mm。
按照楼板每8天浇筑一层,所以需要验算8天、16天、24天...的
承载能力是否满足荷载要求,其计算简图如下:
2.计算楼板混凝土8天的强度是否满足承载力要求
楼板计算长边6.00m,短边6.00×
0.70=4.20m,
楼板计算范围内摆放5×
4排脚手架,将其荷载转换为计算宽度内均布荷载。
第2层楼板所需承受的荷载为
q=1×
1.2×
(0.35+25.00×
0.20)+
1×
(0.56×
5×
4/6.00/4.20)+
1.4×
(2.00+1.00)=11.15kN/m2
计算单元板带所承受均布荷载q=4.20×
11.15=46.83kN/m
板带所需承担的最大弯矩按照四边固接双向板计算
Mmax=0.0735×
ql2=0.0735×
46.83×
4.202=60.71kN.m
验算楼板混凝土强度的平均气温为20.00℃,查温度、龄期对混凝土强度影响曲线
得到8天后混凝土强度达到62.40%,C40.0混凝土强度近似等效为C25.0。
混凝土弯曲抗压强度设计值为fcm=11.88N/mm2
则可以得到矩形截面相对受压区高度:
ξ=Asfy/bh0fcm=1638.00×
210.00/(4200.00×
110.00×
11.88)=0.06
查表得到钢筋混凝土受弯构件正截面抗弯能力计算系数为
s=0.067
此层楼板所能承受的最大弯矩为:
M1=
sbh02fcm=0.067×
4200.000×
110.0002×
11.9×
10-6=40.5kN.m
结论:
由于ΣMi=40.46=40.46<
Mmax=60.71
所以第8天以后的楼板楼板强度和不足以承受以上楼层传递下来的荷载。
第2层以下的模板支撑必须保存。
3.计算楼板混凝土16天的强度是否满足承载力要求
第3层楼板所需承受的荷载为
0.13)+
2×
(2.00+1.00)=16.00kN/m2
16.00=67.19kN/m
67.19×
4.202=87.11kN.m
得到16天后混凝土强度达到83.21%,C40.0混凝土强度近似等效为C33.3。
混凝土弯曲抗压强度设计值为fcm=15.88N/mm2
15.88)=0.05
s=0.048
M2=
sbh02fcm=0.048×
15.9×
10-6=38.7kN.m
由于ΣMi=40.46+38.73=79.19<
Mmax=87.11
所以第16天以后的楼板楼板强度和不足以承受以上楼层传递下来的荷载。
第3层以下的模板支撑必须保存。
4.计算楼板混凝土24天的强度是否满足承载力要求
第4层楼板所需承受的荷载为
3×
(2.00+1.00)=20.85kN/m2
20.85=87.55kN/m
87.55×
4.202=113.52kN.m
得到24天后混凝土强度达到95.37%,C40.0混凝土强度近似等效为C38.2。
混凝土弯曲抗压强度设计值为fcm=18.21N/mm2
18.21)=0.04
s=0.039
M3=
sbh02fcm=0.039×
18.2×
10-6=36.1kN.m
由于ΣMi=40.46+38.73+36.10=115.28>
Mmax=113.52
所以第24天以后的各层楼板强度和足以承受以上楼层传递下来的荷载。
第4层以下的模板支撑可以拆除。
5、梁模板与顶板模板计算内容和过程基本是一个道理的,支撑模式有以下几种:
1、多立杆承重,钢管支撑2、多根立杆承重,木方顶托支撑
3、多根立杆承重,木方顶托支撑4、多根立杆承重,木方顶托支撑
现以第4种支撑模式,做出梁支撑的方案及计算如下:
①、由于层高为4.5m,可确定支架搭设高度为3.5m(层高减掉梁高);
现设定支撑架布距为1.2m,立