江苏省数学竞赛初赛试题原题详解.doc

上传人:b****3 文档编号:1807828 上传时间:2022-10-24 格式:DOC 页数:37 大小:5.23MB
下载 相关 举报
江苏省数学竞赛初赛试题原题详解.doc_第1页
第1页 / 共37页
江苏省数学竞赛初赛试题原题详解.doc_第2页
第2页 / 共37页
江苏省数学竞赛初赛试题原题详解.doc_第3页
第3页 / 共37页
江苏省数学竞赛初赛试题原题详解.doc_第4页
第4页 / 共37页
江苏省数学竞赛初赛试题原题详解.doc_第5页
第5页 / 共37页
点击查看更多>>
下载资源
资源描述

江苏省数学竞赛初赛试题原题详解.doc

《江苏省数学竞赛初赛试题原题详解.doc》由会员分享,可在线阅读,更多相关《江苏省数学竞赛初赛试题原题详解.doc(37页珍藏版)》请在冰豆网上搜索。

江苏省数学竞赛初赛试题原题详解.doc

2009年全国高中数学联赛江苏赛区初赛

一、填空题(每小题7分,共70分)

1.已知sinαcosβ=1,则cos(α+β)=.

2.已知等差数列{an}的前11项的和为55,去掉一项ak后,余下10项的算术平均值为4.若a1=-5,则k=.

3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e=.

4.已知=,则实数x=.

5.如图,在四面体ABCD中,P、Q分别为棱BC与CD上的点,且BP=2PC,CQ=2QD.R为棱AD的中点,则点A、B到平面PQR的距离的比值为.

6.设f(x)=log3x-,则满足f(x)≥0的x的取值范围是.

7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm、体积为3000cm3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm、20cm、60cm.若不计净水器中的存水,则净水水箱中最少可以存水cm3.

8.设点O是△ABC的外心,AB=13,AC=12,则·=.

9.设数列{an}满足:

an+1an=2an+1-2(n=1,2,…),a2009=,则此数列的前2009项的和为.

10.设a是整数,0≤b<1.若a2=2b(a+b),则b=.

二、解答题(本大题共4小题,每小题20分,共80分)

11.在直角坐标系xOy中,直线x-2y+4=0与椭圆+=1交于A,B两点,F是椭圆的左焦点.求以O,F,A,B为顶点的四边形的面积.

12.如图,设D、E是△ABC的边AB上的两点,已知∠ACD=∠BCE,AC=14,AD=7,AB=28,CE=12.求BC.

13.若不等式+≤k对于任意正实数x,y成立,求k的取值范围.

14.⑴写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;

⑵是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?

请证明你的结论.

2009年全国高中数学联赛江苏赛区初赛

(2009年5月3日8∶00-10∶00)

一、填空题(每小题7分,共70分)

1.已知sinαcosβ=1,则cos(α+β)=.填0.

解:

由于|sinα|≤1,|cosβ|≤1,现sinαcosβ=1,故sinα=1,cosβ=1或sinα=-1,cosβ=-1,

∴α=2kπ+,β=2lπ或α=2kπ-,β=2lπ+πÞα+β=2(k+l)π+(k,l∈Z).

∴cos(α+β)=0.

2.已知等差数列{an}的前11项的和为55,去掉一项ak后,余下10项的算术平均值为4.若a1=-5,则k=.填11.

解:

设公差为d,则得

55=-5×11+×11×10dÞ55d=110Þd=2.

ak=55-4×10=15=-5+2(k-1)Þk=11.

3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e=.填.

解:

由(2b)2=2c×2aÞa2-c2=acÞe2+e-1=0Þe=.

4.已知=,则实数x=.填1.

解:

即=Þ32x-4×3x+3=0Þ3x=1(舍去),3x=3Þx=1.

5.如图,在四面体ABCD中,P、Q分别为棱BC与CD上的点,且BP=2PC,CQ=2QD.R为棱AD的中点,则点A、B到平面PQR的距离的比值为.填.

解:

A、B到平面PQR的距离分别为三棱锥APQR与BPQR的以三角形PQR为底的高.故其比值等于这两个三棱锥的体积比.

VAPQR=VAPQD=×VAPCD=××VABCD=VABCD;

又,SBPQ=SBCD-SBDQ-SCPQ=(1--×)SBCD=SBCD,

VRBPQ=VRBCD=×VABCD=VABCD.

∴A、B到平面PQR的距离的比=1∶4.

又,可以求出平面PQR与AB的交点来求此比值:

在面BCD内,延长PQ、BD交于点M,则M为面PQR与棱BD的交点.

由Menelaus定理知,··=1,而=,=,故=4.

在面ABD内,作射线MR交AB于点N,则N为面PQR与AB的交点.

由Menelaus定理知,··=1,而=4,=1,故=.

∴A、B到平面PQR的距离的比=1∶4.

6.设f(x)=log3x-,则满足f(x)≥0的x的取值范围是.填[3,4].

解:

定义域(0,4].在定义域内f(x)单调增,且f(3)=0.故f(x)≥0的x的取值范围为[3,4].

7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm、体积为3000cm3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm、20cm、60cm.若不计净水器中的存水,则净水水箱中最少可以存水cm3.填78000.

解:

设净水器的长、高分别为x,ycm,则

xy=300,

V=30(20+x)(60+y)=30(1200+60x+20y+xy)

≥30(1200+2+300)=30(1500+1200)

=30×2700.

∴至少可以存水78000cm3.

8.设点O是△ABC的外心,AB=13,AC=12,则·=.填-.

解:

设||=||=||=R.则

·=(+)·=·+·=R2cos(π-2C)+R2cos2B

=R2(2sin2C-2sin2B)=(2RsinB)2-(2RsinC)2=(122-132)=-.

9.设数列{an}满足:

an+1an=2an+1-2(n=1,2,…),a2009=,则此数列的前2009项的和为.填2008+.

解:

若an+1≠0,则an=2-,故a2008=2-,a2007=2-=-,a2006=2+,a2005=.

一般的,若an≠0,1,2,则an=2-,则an-1=,an-2=,an-3=an+1,故an-4=an.

于是,an=502(a1+a2+a3+a4)+a2009=502(a2005+a2006+a2007+a2008)+a2009=2008+.

10.设a是整数,0≤b<1.若a2=2b(a+b),则b=.填0,,-1.

解:

若a为负整数,则a2>0,2b(a+b)<0,不可能,故a≥0.

于是a2=2b(a+b)<2(a+1)Þa2-2a-2<0Þ0≤a<1+Þa=0,1,2.

a=0时,b=0;

a=1时,2b2+2b-1=0Þb=;

a=2时,b2+2b-2=0Þb=-1.

说明:

本题也可以这样说:

求实数x,使[x]2=2{x}x.

二、解答题(本大题共4小题,每小题20分,共80分)

11.在直角坐标系xOy中,直线x-2y+4=0与椭圆+=1交于A,B两点,F是椭圆的左焦点.求以O,F,A,B为顶点的四边形的面积.

解:

取方程组代入得,25y2-64y+28=0.

此方程的解为y=2,y=.

即得B(0,2),A(-,),又左焦点F1(-,0).

连OA把四边形AFOB分成两个三角形.

得,S=×2×+××=(72+7).

也可以这样计算面积:

直线与x轴交于点C(-4,0).所求面积=×4×2-×(4-)×=(72+7).

也可以这样计算面积:

所求面积=(0×2-0×0+0×-(-)×2+(-)×0-(-)×+(-)×0-0×0)=(+)=(72+7).

12.如图,设D、E是△ABC的边AB上的两点,已知∠ACD=∠BCE,AC=14,AD=7,AB=28,CE=12.求BC.

解:

=Þ△ACD∽△ABCÞ∠ABC=∠ACD=∠BCE.

∴CE=BE=12.AE=AB-BE=16.

∴cosA====.

∴BC2=AC2+AB2-2AC·ABcosA=142+282-2·14·28·=72·9ÞBC=21.

13.若不等式+≤k对于任意正实数x,y成立,求k的取值范围.

解法一:

显然k>0.(+)2≤k2(2x+y)Þ(2k2-1)x-2+(k2-1)y≥0对于x,y>0恒成立.

令t=>0,则得f(t)=(2k2-1)t2-2t+(k2-1)≥0对一切t>0恒成立.

当2k2-1≤0时,不等式不能恒成立,故2k2-1>0.

此时当t=时,f(t)取得最小值-+k2-1==.

当2k2-1>0且2k2-3≥0,即k≥时,不等式恒成立,且当x=4y>0时等号成立.

∴k∈[,+∞).

解法二:

显然k>0,故k2≥=.令t=>0,则k2≥=(1+).

令u=4t+1>1,则t=.只要求s(u)=的最大值.

s(u)=≤=2,于是,(1+)≤(1+2)=.

∴k2≥,即k≥时,不等式恒成立(当x=4y>0时等号成立).

又:

令s(t)=,则s¢(t)==,t>0时有驻点t=.且在0<t<时,s¢(t)>0,在t>时,s¢(t)<0,即s(t)在t=时取得最大值2,此时有k2≥(1+s())=.

解法三:

由Cauchy不等式,(+)2≤(+1)(2x+y).

即(+)≤对一切正实数x,y成立.

当k<时,取x=,y=1,有+=,而k=k<×=.即不等式不能恒成立.

而当k≥时,由于对一切正实数x,y,都有+≤≤k,故不等式恒成立.

∴k∈[,+∞).

14.⑴写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;

⑵是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?

请证明你的结论.

解:

对于任意n∈N*,n2≡0,1(mod4).

设a,b是两个不同的自然数,①若a≡0(mod4)或b≡0(mod4),或a≡b≡2(mod4),均有ab≡0(mod4),此时,ab+10≡2(mod4),故ab+10不是完全平方数;②若a≡b≡1(mod4),或a≡b≡3(mod4),则ab≡1(mod4),此时ab+10≡3(mod4),故ab+10不是完全平方数.

由此知,ab+10是完全平方数的必要不充分条件是ab(mod4)且a与b均不能被4整除.

⑴由上可知,满足要求的三个自然数是可以存在的,例如取a=2,b=3,c=13,则2×3+10=42,2×13+10=62,3×13+10=72.

即2,3,13是满足题意的一组自然数.

⑵由上证可知不存在满足要求的四个不同自然数.

这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod4同余,这两个数的积加10后不是完全平方数.

故证.

2010年全国高中数学联赛江苏赛区·初赛

一、填空题(本题满分70分,每小题7分)

1.方程的实数解为.

2.函数R的单调减区间是.

3.在△中,已知,,则=.

4.函数在区间上的最大值是,最小值是.

5.在直角坐标系中,已知圆心在原点、半径为的圆与△的边有公共点,

其中、、,则的取值范围为.

6.设函数的定义域为R,若与都是关于的奇函数,则函数

(第

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1