小升初总复习数学归类讲解及训练中Word下载.docx
《小升初总复习数学归类讲解及训练中Word下载.docx》由会员分享,可在线阅读,更多相关《小升初总复习数学归类讲解及训练中Word下载.docx(20页珍藏版)》请在冰豆网上搜索。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米,高12厘米。
5、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。
这堆沙约重多少吨?
6、一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?
7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?
小学数学总复习专题讲解及训练(六)
主要内容
比例的意义和基本性质
考点分析
1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。
2、表示两个比相等的式子叫做比例。
3、组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
4、在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。
求比例的未知项,叫做解比例。
典型例题
例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)
AB
C
(1)长方形A的长是1.5厘米,宽是1厘米;
长方形B的长是3厘米,宽是2厘米。
这两个长方形的长有什么关系?
宽呢?
(2)如果要把长方形A按1:
2的比缩小,长和宽应是原来的几分之几?
各是多少?
例2、(根据指定的比,将图形按要求放大或缩小)
先按3:
2的比画出长方形A放大后的图形B,再按1:
2的比画出长方形A缩小后的图形C。
(1)图B的长、宽各是几格?
(2)图C呢?
(3)观察这三幅图形,你有什么发现?
A
B
例3、(将两个相等比写成一个等式)
图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?
比较写出的两个比,你有什么发现?
3厘米
6厘米
4厘米
8厘米
例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。
(1)
5
:
6
和15
18
(2)
0.2
0.1
和
3
1
(3)
1.2
0.8
(4)
2
和
例5、(比例的各部分名称和比例的基本性质)
一台织布机3小时织布3.6米,4小时织布4.8米。
你能根据数量间的关系写出比例吗?
分析与解:
(1)这台织布机织布米数和织布时间的比相等。
3.6
=4.8
4
(2)这台织布机织布米数的比和织布时间的比相等。
4.8
=3
(3)这台织布机织布时间和织布米数的比相等。
3
3.6
=4
4.8
介绍“项”:
组成比例的四个数,叫做比例的项。
例如:
=
内项
外项
观察题中的三个比例,你有什么发现?
43.6
43
(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。
(2)3.6×
4=3×
4.8,可见在比例中两个外项的积等于两个内项的积。
(3)如果把3.6
4改写成分数形式
=
,等号两边的分子、分母分别交叉相乘,结果也相等。
(4)如果用字母表示比例的四个项,即a:
b=c:
d,
那么这个规律可表示成ad=bc或bc=ad。
(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例6、(比例基本性质的应用)根据2×
7=1.4×
10这个等式写出几个比例。
例7、(按比例放大的含义)
王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?
放大后宽是多少?
1、一张长方形图片,长12厘米,宽9厘米。
按1:
3的比缩小后,新图片的长是()厘米,宽是()厘米,这张图片()不变,大小()。
2、一块正方形的花手帕,边长10厘米,将其按()的比放大后,边长变为30厘米。
3、按2:
1的比画出平行四边形放大后的图形,按1:
3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
5、在2∶5、12∶0.2、310∶15三个比中,与5.6∶14能组成比例的一个比是(
)。
6、在比例里,两个()的积和两个()积相等。
7、如果A×
3=B×
5,那么A∶B=()∶()。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:
()∶()=()∶()。
9、根据3×
8=4×
6写成的比例是()、()或()。
10、甲数的25%等于乙数的75%,那么甲数与乙数的比是()∶()。
13、解比例
ⅹ∶3=
∶
=
∶
=
∶x
∶x=3∶12
∶x=5%∶0.6
=
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是()。
小学数学总复习专题讲解及训练(七)
比例尺、面积变化、确定位置
1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺=
,比例尺有两种形式:
数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一(
)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n²
:
1(或1:
n²
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
典型例题:
例1、(认识比例尺)
王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
你能分别写出菜地长、宽的图上距离和实际距离的比吗?
例2、(对比例尺的理解及比例尺的两种表示方法)
比例尺1:
1000表示图上距离是实际距离的几分之几?
实际距离是图上距离的多少倍?
图上1厘米表示实际距离多少米?
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少?
例4、(根据比例尺求图上距离或实际距离)
在比例尺是
的地图上,量得甲、乙两地的距离是2.5厘米。
两地的实际距离是多少米?
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)
下面的大长方形是由一个小长方形按比例放大后得到的图形。
分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)
如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?
N
商场北
45º
60º
书店
0369千米
汽车
例7、(知道了物体的方向和距离,才能确定物体的具体位置)
量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60º
方向的多少千米处?
商场呢?
例8、(辨析)书店在汽车的北偏东60º
方向,表示汽车也在书店的北偏东60º
方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)
海面上有一座灯塔,灯塔北偏西30º
方向30千米处是凤凰岛。
北
W西东E
灯塔
0102030千米
南
S
你能在图上指出凤凰岛大约在什么位置吗?
例10、(用方向和距离描述简单的行走路线)
下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向()行驶到达青水公园,再向()偏()()的方向行()千米到达抗战纪念碑。
(2)由绿博园向南偏()()的方向行()千米到达购物中心,再向北偏()()的方向行()千米到达人民公园。
1、说出下面各比例尺表示的意思。
1∶40000
2、判断:
①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,
这幅图的比例尺为1︰2。
┈┈┈┈()
②某机器零件设计图纸所用的比例尺为1︰1,
说明了该零件的实际长度与图上是一样的┈┈┈┈()
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。
┈┈┈()
3、选择:
①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离()实际距离。
A.小于B.大于C.等于
②学校操场长100米,宽60米,在练习本上画图,选用()作比例尺较合适。
A.1︰20B.1︰2000C.1︰200
4、一幅地图的线段比例尺是,这幅图上3厘米表示实际距离多少千米?
5、一种精密零件,画在图上是12厘米,而实际的长度是3毫米。
求这幅图的比例尺。
6、英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1:
4000的平面图上,长和宽各应画多少厘米?
7、在比例尺为1:
200000的一幅地图上,
城和
城相距5厘米,两城实际相距多少千米?
8、一幅地图的线段比例尺是:
04080120160千米,甲乙两城在
这幅地图上相距18厘米,两城间的实际距离是多少千米?
丙丁两城相距660千米,在这幅地图上两城之间的距离是多少厘米?
9、在一幅比例尺为1:
500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
(2)写出图上面积和实际面积的比。
并与比例尺进行比较。
10、下图是按1︰50000的比例尺绘出的方位图。
说一说商店、公园、电影院的位置。
电影院
●30º
●●
40º
广场公园
●商店
(1)公园在广场的东面()千米处。
(2)电影院在广场的()偏()()方向()千米处。
(3)商店在广场的()。
11、小明家在百货商场的北偏西40°
方向2500米处,图书馆在农业银行东偏南40°
方向1500米处。
下面是小明坐出租车从家去图书馆的路线图。
已知出租车在3千米以内(含3千米)按起步价9元计算,以后每增加1千米车费就增加2元。
请你按图中提供的信息算一算,小明一共要花多少元出租车费?
小学数学总复习专题讲解及训练(八)
正比例和反比例
1、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:
=K(一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。
对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:
xy=K(一定)。
4、两个变量的比值一定,这两个变量成正比例;
两个变量的积一定,这两个变量成反比例;
没有上述两种关系,这两个变量不成比例。
例1、(正比例的意义)一列火车行驶的时间和路程如下表。
这两种量有什么关系?
时间/时
2
3
5
6
……
路程/千米
120
240
360
480
600
720
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?
为什么?
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分
7
7
14
21
28
35
42
49
(1)图中的点A表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。
请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
(3)根据图像判断,列车运行2分半钟时,行驶的路程是多少千米?
行驶30千米大约需要几分钟?
路程/千米
42
35
28
21
14
7●A
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm
直径/cm
8
10
12
周长/cm
6.28
12.56
18.84
25.12
31.4
37.68
面积/cm²
3.14
28.26
50.24
78.5
113.04
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。
而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)
下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。
每小时加工零件的个数/个
20
30
40
60
80
加工的时间/时
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?
例7、(辨析)和一定,一个加数和另一个加数成反比例。
例8、(综合题1)
(1)长方形的面积一定,长和宽成反比例吗?
(2)长方形的周长一定,长和宽成反比例吗?
例9、(综合题2)
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
1、仔细观察每张表格,思考表格中两种量之间有关系吗?
有什么关系?
表格1
数量/本
总价/元
24
32
80
表格2
单价/元
1.5
16
表格3用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
15
2、用一批纸装订练习本,每本25页,可以装订400本。
如果要装订500本,每本有X页。
题中()量一定,关系式:
()○()=()(一定),()和()成()比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。
如果改用边长0.4米的正方形地砖,需要Y块。
4、在圆柱的侧面积、底面周长、高这三种量中
当底面周长一定时,()与()成()比例;
当高一定时,()与()成()比例;
当侧面积一定时,()与()成()比例。
5、在被除数、除数、商这三种量中,
当()一定时,()与()成正比例;
当()一定时,()与()成反比例;
6、当a×
b=c(a、b、c为三种量,且均不为0)。
()一定,()与()成()比例;
()一定,()与()成()比例;
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。
()
(2)、图上距离和实际距离成正比例。
(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。
(4)、分数的大小一定,它的分子和分母成正比例。
()
(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。
(6)、两种相关联的量,不成正比例,就成反比例。
(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。
(8)在400米赛跑中,跑步的速度和所用时间成反比例。
(9)工作总量一定,已完成的量和未完成的量成反比例。
(10)正方体的棱长和体积成正比例。
(11)被除数一定,除数和商成反比例。
(12)圆的周长和它的直径成正比例。
8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数()。
(2)、正方形的边长和周长()。
(3)、水池的容积一定,水管每小时注水量和所用时间()。
(4)、房间面积一定,每块砖的面积和铺砖的块数()。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数()。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数()。
9、思考:
明明三岁时体重12千克,十一岁时体重44千克。
于是小张就说:
“明明的体重和身高成正比例。
”你认为小张的说法对吗?
10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
(1)把下表填写完整。
造纸时间/时
造纸吨数/吨
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。
吨数/吨
6
5
4
3
2
1
1234567