中英文翻译几何在机械设计中的作用Word下载.docx

上传人:b****5 文档编号:17979120 上传时间:2022-12-12 格式:DOCX 页数:13 大小:230.47KB
下载 相关 举报
中英文翻译几何在机械设计中的作用Word下载.docx_第1页
第1页 / 共13页
中英文翻译几何在机械设计中的作用Word下载.docx_第2页
第2页 / 共13页
中英文翻译几何在机械设计中的作用Word下载.docx_第3页
第3页 / 共13页
中英文翻译几何在机械设计中的作用Word下载.docx_第4页
第4页 / 共13页
中英文翻译几何在机械设计中的作用Word下载.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

中英文翻译几何在机械设计中的作用Word下载.docx

《中英文翻译几何在机械设计中的作用Word下载.docx》由会员分享,可在线阅读,更多相关《中英文翻译几何在机械设计中的作用Word下载.docx(13页珍藏版)》请在冰豆网上搜索。

中英文翻译几何在机械设计中的作用Word下载.docx

学生姓名

学号年级08 

指导教师蔡鹏 

教务处制表

二O一二年五月二十八日

OntheRoleofGeometryinMechanicalDesign

VadimShapiroHerbVoelcker

TheSibleySchoolofMechanicalandAerospaceEngineering,CornellUniversity,Ithaca,NewYork,USA

Acompletedesignusuallyspecifiesamechanicalsystemintermsofcomponentpartsandassemblyrelationships.Eachparthasafullydefinednominaloridealformandwelldefinedmaterialproperties.Tolerancesareusedtopermitvariationsintheformandpropertiesofthecomponents,andareusedalsotopermitvariationsintheassemblyrelationships.Thusthegeometryandmaterialpropertiesofthesystemandallofitspiecesarefullydefined(atleastinprinciple).Henceforthweshallfocusongeometryand,forreasonsthatwillbecomeevident,willnotdealwithmaterialsdespitetheirobviousimportance.

Mechanicalsystemsspecifiedinthemannerjustdescribedmeetfunctionalspecificationsthatappearedinitiallyasdesigngoals.Theprocessofdesigncanbethoughtofas"

generatingthegeometry"

thebreakdownintocomponentswithcoarselyspecifiedgeometry,andthenthedetailedspecificationofthecomponentformsandfittingrelationships.Designseemstoproceedthroughsimultaneousrefinementofgeometryandfunction[I].Animportantlineofdesignresearchseeksscientificmodelsforthisrefinementprocessandsystematicproceduresforimprovingandperhapsautomatingit.

Atpresentwehavetoolsfordealingwithtwowidelyseparatedstagesoftherefinementprocess.

Forsingleparts,functionisusuallyspecifiedthroughloadsonpiecesofsurface(e.g.aforcedistributionoverasupportsurface,aflowratethroughanorifice,aradiationpatternoveracoolingfin);

specificationofthesolidmaterialthatpro-videsacarrierforthepiecesofsurfacemaybeviewedasaconstrainedshapeoptimizationprocess.

Atthehigherlevelof"

unitfunctionality,"

whereonedealswithsprings,motors,gearboxes,heatexchangers,andthelike,geometryusuallyisabstractedintorealnumbersifacknowledgedatall,andfunctioniscastintermsofordinarydifferentialoralgebraicequations(forheatflow,motortorqueasafunctionoffieldcurrent,andsoforth).Systemsofsuchequationsdescribethecompositefunctionalismofnetworksoffunctionalunits.Thereisabiggapbetweenthese"

islandsofunderstanding,"

andintermediatestagesofabstractionareneededwhichacknowledgethepartialgeometryandspatialarrangementtopologyofsubassemblies.Broadlyspeaking,geometryisfaringbadlyincontemporarydesignresearch;

manyinvestigatorseither"

sweepitunderthecarpet"

ordealwithitsyntactically,e.g.through"

features"

definedinadhocways.Clearlyweneedmoresystematicwaystoaddresstherelationshipbetweengeometryandfunction,andwesuggestbelowsomeinitialstepstowardthisgoal.

EnergyExchangeasaMechanismforModelingMechanicalFunction

Mechanicalartifactsinteractwiththeirenvironmentsthroughspatiallydistributedenergyex-changes,andwearguebelowthatmechanicalfunctionalismcanbemodeledintermsoftheseexchanges.TheinitialcastoftheargumentdrawsheavilyonseminalworkbyHenryPaynter[2].Weshallregardmechanicalartifactsassystemsthatrangefromsinglesolidsorfluidstreams,whichusuallyarethelowestlevelofnaturalsystemthatexhibitimportantpropertiesofmechanics,tocomplexassembliesofsolidsandstreams.Aclosedboundary,whichmaybephysicalorconceptual,isadistinguishingcharacteristicofasystem:

thesys-temlieswithin(andpartiallyin)theboundary,theenvironmentliesoutside,andinteractionoccurs

throughtheboundary.Wedistinguishthefollowing:

S:

thephysicalsystemunderdiscussion;

8S:

theboundaryofS;

V:

aspatialregioncontainingSwhosecomplementistheenvironment;

8V:

theboundaryofV.

SmaycoincidewithV,and8Sand8Vareclosedsurfaces(usually2-mainfolds)inE3.WedistinguishSfromVbecauseSmaybepartiallyorwhollyun-known(recallthatthisnoteisaboutdesign)butboundablebyaknownV.Theprincipleofcontinuityofenergyappliestalllevelsofsystemabstraction.Ifnoenergyisgeneratedbythesystem,then

Thesurfaceintegralontheleftdescribesthetotalenergyflux(instantaneouspower)throughtheboundary;

PisageneralizedPoyntingvectordescribingtheinstantaneousrateatwhichenergyistransportedperunitarea,andnisthenormalatapointintheboundary8V.Ontheright,Oe/Otisthe(volumetric)densityofenergystoredinthesystem,andgistherateofenergylossordissipation.Asysteminteractswithitsenvironmentbyex-changingenergythroughitsphysicalboundary:

forexample,byradiatingenergystoredinthesystemoveraportionofitsarea,orbyprovidingsupporttoanexternalmatingpartandtherebyinducingstorageofdeformationenergyinthesystem.Thesub-setsofthephysicalboundaryoverwhichsuchex-changesoccurwillbecalled(followingPaynter)energyports.Ifs~isthephysicalboundarysubset('

pieceofsurface'

)associatedwiththeituport,then

Thusthetotalenergyfluxthroughtheboundaryisasumofsignedfluxesthroughtheports.Wenotethataboundarysubsetsimaybelongtoseveralports,andthatbodyforces,suchasthoseinducedbygravitationalandmagneticfields,maybeaccommodatedbytaking~Sastheassociatedport.

GeometricalandFunctionalRefinementintheLimit

TheleftsideofEq.(2a)specifiesenergyexchangesthroughthesystem'

sportsandrequiresthatthefluxvector(s)andportgeometriesbeknown.Thetermsontherightcoverinternalenergy(re)distributionand/ordissipation.Thephysicaleffectsimpliedbythesetermsdependontheenergyregime(s)andthegeometryofthesystem;

theremayberigidbodymotion,elasticorplasticdeformation,temperatureredistribution,andsoforth.Mathematicalevaluationrequiresthesolutionof3-Dboundary-and/orinitial-valueproblems.Verymarkedsimplificationsensueifoneassumesthat1)theportsarespatiallylocalizedandidealizedsothattheintegralsontheleftofEq.(2a)maybeevaluatedindividuallytoyieldtermsPi,and2)internalenergystorageanddissipationaresimilarlylocalizedindisjointdiscreteregions,therebypermittingtheright-handintegralstobedecomposedintosumsoflocalintegralswhichmaybeevaluatedindividually.Withtheseassumptions,Eq.(2a)mayberewritten

wherePiisthepowerthroughthediscreteport,Eistheinstantaneousenergystoredinthediscreteregion,andGkisthedissipationrateinthekdiscreteregion.Alimitingformofthisrefinement(inPaynter'

sterminology--reticulation)isa"

Dirac-deltalimit"

whereintheportsshrinktospotsofzeroareaandthevolumetricregionsshrinktopointmasses,idealizedresistors,andthelike.Equation(3)isthebasisforPaynter'

senergybonddiagrams,orbondgraphs.Itdescribesasys-temthatmaytransfer,transform,store,anddissipateenergythroughelementswhosegeometryhasbeenrefinedintoafewrealnumbers--thespatiallpositionsofthediscreteportsandlumpedregions(whichgenerallyarenotcarriedinbond-graphrepresentations),andintegralcharacterizationsofthediscreteportsandregions(forexamplethe"

value,"

inkilograms,ofapointmass).Thishigherviewenablesonetoanalyzethedynamicsoftheidealized(discreet)system,butonecandeducelittleaboutthegeometryoffeasibledistributed(i.e.,real)systemsfromsuchanalyses;

essentiallyallgeometrymustbeinduced.Apparentlywehavegonetoofar,i.e.,havethrownawaytoomuchgeometry.

Fig.

(1)Designofsimplebracket

TowardanAppropriateRoleforGeometryWewouldliketostepbackfromthelimitingrefinementjustdiscussed,whereallnotionsofformhavebeenlost,andincludesintheproblemsomecontinuousgeometry--butnotthefull-blownfieldproblemcoveredbyEq.(I)unlessthisisunavoidable.Weshallsuggestbelowthreeprinciplesgoverningtheinteractionofformandfunctionthatwebelievewillyieldgeometricallywelldefined(butnotnecessarilyoptimum)designs.Asimplebutcommonexampledrawnfrompractice--designofabracket—willmotivatethediscussion(Fig.1).

Thedesignbeginswiththreeholesofknowndiameterandconfigurationthataretobecarriedbyanunknownsolid(Fig.la);

thesematewithotherparts(twoscrewsandapivotpin).Bossesarecreatedtocontaintheholes(Fig.lb)becauseofconcernaboutinterferencewithothercomponentspassingbetweentheholes.FinallytheholesandbossesareboundtogetherintoasinglepartasinFigs.lcandld,withthefinalshapebeinggovernedbycriteriaforclearance,strength,weight,andaestheticandmanufacturingsimplicity.Twosimplebutimportantinferencesmaybedrawnfromtheexample.Firstly,theinitialholes(plussomeimpliedconstraintsurfacesinthethirddimension)arethebracket'

senergyports;

theyarefullyspecifiedgeometricallyandspecifybyimplicationwhatthebracketistodo--maintaintherelativepositionofportswhosegeometryadmitsrotationalmotion.Inprincipletheassociatedenergyregimes(force,torque:

elasticity)canbefullyspecifiedaswell,butinpracticetheyareoftenonlyimpliedor"

understood."

Secondly,theremaininggeometryisdiscretionarybutconstrainedbyrequirementsthattheholesbeboundintoaconnectedsolid,thatthesolidnotinterferewithothercomponents,andsoforth.Wenotethat,atthesingle-componentlevelofthebracket,shapeoptimizationusuallydoesrequiresolutionofthefull3-DfieldproblemcoveredbyEq.(2a).

Fig

(2)position-fixingofthecharacterbracket

Fromthisexamplean

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1