中英文翻译几何在机械设计中的作用Word下载.docx
《中英文翻译几何在机械设计中的作用Word下载.docx》由会员分享,可在线阅读,更多相关《中英文翻译几何在机械设计中的作用Word下载.docx(13页珍藏版)》请在冰豆网上搜索。
学生姓名
学号年级08
指导教师蔡鹏
教务处制表
二O一二年五月二十八日
OntheRoleofGeometryinMechanicalDesign
VadimShapiroHerbVoelcker
TheSibleySchoolofMechanicalandAerospaceEngineering,CornellUniversity,Ithaca,NewYork,USA
Acompletedesignusuallyspecifiesamechanicalsystemintermsofcomponentpartsandassemblyrelationships.Eachparthasafullydefinednominaloridealformandwelldefinedmaterialproperties.Tolerancesareusedtopermitvariationsintheformandpropertiesofthecomponents,andareusedalsotopermitvariationsintheassemblyrelationships.Thusthegeometryandmaterialpropertiesofthesystemandallofitspiecesarefullydefined(atleastinprinciple).Henceforthweshallfocusongeometryand,forreasonsthatwillbecomeevident,willnotdealwithmaterialsdespitetheirobviousimportance.
Mechanicalsystemsspecifiedinthemannerjustdescribedmeetfunctionalspecificationsthatappearedinitiallyasdesigngoals.Theprocessofdesigncanbethoughtofas"
generatingthegeometry"
thebreakdownintocomponentswithcoarselyspecifiedgeometry,andthenthedetailedspecificationofthecomponentformsandfittingrelationships.Designseemstoproceedthroughsimultaneousrefinementofgeometryandfunction[I].Animportantlineofdesignresearchseeksscientificmodelsforthisrefinementprocessandsystematicproceduresforimprovingandperhapsautomatingit.
Atpresentwehavetoolsfordealingwithtwowidelyseparatedstagesoftherefinementprocess.
Forsingleparts,functionisusuallyspecifiedthroughloadsonpiecesofsurface(e.g.aforcedistributionoverasupportsurface,aflowratethroughanorifice,aradiationpatternoveracoolingfin);
specificationofthesolidmaterialthatpro-videsacarrierforthepiecesofsurfacemaybeviewedasaconstrainedshapeoptimizationprocess.
Atthehigherlevelof"
unitfunctionality,"
whereonedealswithsprings,motors,gearboxes,heatexchangers,andthelike,geometryusuallyisabstractedintorealnumbersifacknowledgedatall,andfunctioniscastintermsofordinarydifferentialoralgebraicequations(forheatflow,motortorqueasafunctionoffieldcurrent,andsoforth).Systemsofsuchequationsdescribethecompositefunctionalismofnetworksoffunctionalunits.Thereisabiggapbetweenthese"
islandsofunderstanding,"
andintermediatestagesofabstractionareneededwhichacknowledgethepartialgeometryandspatialarrangementtopologyofsubassemblies.Broadlyspeaking,geometryisfaringbadlyincontemporarydesignresearch;
manyinvestigatorseither"
sweepitunderthecarpet"
ordealwithitsyntactically,e.g.through"
features"
definedinadhocways.Clearlyweneedmoresystematicwaystoaddresstherelationshipbetweengeometryandfunction,andwesuggestbelowsomeinitialstepstowardthisgoal.
EnergyExchangeasaMechanismforModelingMechanicalFunction
Mechanicalartifactsinteractwiththeirenvironmentsthroughspatiallydistributedenergyex-changes,andwearguebelowthatmechanicalfunctionalismcanbemodeledintermsoftheseexchanges.TheinitialcastoftheargumentdrawsheavilyonseminalworkbyHenryPaynter[2].Weshallregardmechanicalartifactsassystemsthatrangefromsinglesolidsorfluidstreams,whichusuallyarethelowestlevelofnaturalsystemthatexhibitimportantpropertiesofmechanics,tocomplexassembliesofsolidsandstreams.Aclosedboundary,whichmaybephysicalorconceptual,isadistinguishingcharacteristicofasystem:
thesys-temlieswithin(andpartiallyin)theboundary,theenvironmentliesoutside,andinteractionoccurs
throughtheboundary.Wedistinguishthefollowing:
S:
thephysicalsystemunderdiscussion;
8S:
theboundaryofS;
V:
aspatialregioncontainingSwhosecomplementistheenvironment;
8V:
theboundaryofV.
SmaycoincidewithV,and8Sand8Vareclosedsurfaces(usually2-mainfolds)inE3.WedistinguishSfromVbecauseSmaybepartiallyorwhollyun-known(recallthatthisnoteisaboutdesign)butboundablebyaknownV.Theprincipleofcontinuityofenergyappliestalllevelsofsystemabstraction.Ifnoenergyisgeneratedbythesystem,then
Thesurfaceintegralontheleftdescribesthetotalenergyflux(instantaneouspower)throughtheboundary;
PisageneralizedPoyntingvectordescribingtheinstantaneousrateatwhichenergyistransportedperunitarea,andnisthenormalatapointintheboundary8V.Ontheright,Oe/Otisthe(volumetric)densityofenergystoredinthesystem,andgistherateofenergylossordissipation.Asysteminteractswithitsenvironmentbyex-changingenergythroughitsphysicalboundary:
forexample,byradiatingenergystoredinthesystemoveraportionofitsarea,orbyprovidingsupporttoanexternalmatingpartandtherebyinducingstorageofdeformationenergyinthesystem.Thesub-setsofthephysicalboundaryoverwhichsuchex-changesoccurwillbecalled(followingPaynter)energyports.Ifs~isthephysicalboundarysubset('
pieceofsurface'
)associatedwiththeituport,then
Thusthetotalenergyfluxthroughtheboundaryisasumofsignedfluxesthroughtheports.Wenotethataboundarysubsetsimaybelongtoseveralports,andthatbodyforces,suchasthoseinducedbygravitationalandmagneticfields,maybeaccommodatedbytaking~Sastheassociatedport.
GeometricalandFunctionalRefinementintheLimit
TheleftsideofEq.(2a)specifiesenergyexchangesthroughthesystem'
sportsandrequiresthatthefluxvector(s)andportgeometriesbeknown.Thetermsontherightcoverinternalenergy(re)distributionand/ordissipation.Thephysicaleffectsimpliedbythesetermsdependontheenergyregime(s)andthegeometryofthesystem;
theremayberigidbodymotion,elasticorplasticdeformation,temperatureredistribution,andsoforth.Mathematicalevaluationrequiresthesolutionof3-Dboundary-and/orinitial-valueproblems.Verymarkedsimplificationsensueifoneassumesthat1)theportsarespatiallylocalizedandidealizedsothattheintegralsontheleftofEq.(2a)maybeevaluatedindividuallytoyieldtermsPi,and2)internalenergystorageanddissipationaresimilarlylocalizedindisjointdiscreteregions,therebypermittingtheright-handintegralstobedecomposedintosumsoflocalintegralswhichmaybeevaluatedindividually.Withtheseassumptions,Eq.(2a)mayberewritten
wherePiisthepowerthroughthediscreteport,Eistheinstantaneousenergystoredinthediscreteregion,andGkisthedissipationrateinthekdiscreteregion.Alimitingformofthisrefinement(inPaynter'
sterminology--reticulation)isa"
Dirac-deltalimit"
whereintheportsshrinktospotsofzeroareaandthevolumetricregionsshrinktopointmasses,idealizedresistors,andthelike.Equation(3)isthebasisforPaynter'
senergybonddiagrams,orbondgraphs.Itdescribesasys-temthatmaytransfer,transform,store,anddissipateenergythroughelementswhosegeometryhasbeenrefinedintoafewrealnumbers--thespatiallpositionsofthediscreteportsandlumpedregions(whichgenerallyarenotcarriedinbond-graphrepresentations),andintegralcharacterizationsofthediscreteportsandregions(forexamplethe"
value,"
inkilograms,ofapointmass).Thishigherviewenablesonetoanalyzethedynamicsoftheidealized(discreet)system,butonecandeducelittleaboutthegeometryoffeasibledistributed(i.e.,real)systemsfromsuchanalyses;
essentiallyallgeometrymustbeinduced.Apparentlywehavegonetoofar,i.e.,havethrownawaytoomuchgeometry.
Fig.
(1)Designofsimplebracket
TowardanAppropriateRoleforGeometryWewouldliketostepbackfromthelimitingrefinementjustdiscussed,whereallnotionsofformhavebeenlost,andincludesintheproblemsomecontinuousgeometry--butnotthefull-blownfieldproblemcoveredbyEq.(I)unlessthisisunavoidable.Weshallsuggestbelowthreeprinciplesgoverningtheinteractionofformandfunctionthatwebelievewillyieldgeometricallywelldefined(butnotnecessarilyoptimum)designs.Asimplebutcommonexampledrawnfrompractice--designofabracket—willmotivatethediscussion(Fig.1).
Thedesignbeginswiththreeholesofknowndiameterandconfigurationthataretobecarriedbyanunknownsolid(Fig.la);
thesematewithotherparts(twoscrewsandapivotpin).Bossesarecreatedtocontaintheholes(Fig.lb)becauseofconcernaboutinterferencewithothercomponentspassingbetweentheholes.FinallytheholesandbossesareboundtogetherintoasinglepartasinFigs.lcandld,withthefinalshapebeinggovernedbycriteriaforclearance,strength,weight,andaestheticandmanufacturingsimplicity.Twosimplebutimportantinferencesmaybedrawnfromtheexample.Firstly,theinitialholes(plussomeimpliedconstraintsurfacesinthethirddimension)arethebracket'
senergyports;
theyarefullyspecifiedgeometricallyandspecifybyimplicationwhatthebracketistodo--maintaintherelativepositionofportswhosegeometryadmitsrotationalmotion.Inprincipletheassociatedenergyregimes(force,torque:
elasticity)canbefullyspecifiedaswell,butinpracticetheyareoftenonlyimpliedor"
understood."
Secondly,theremaininggeometryisdiscretionarybutconstrainedbyrequirementsthattheholesbeboundintoaconnectedsolid,thatthesolidnotinterferewithothercomponents,andsoforth.Wenotethat,atthesingle-componentlevelofthebracket,shapeoptimizationusuallydoesrequiresolutionofthefull3-DfieldproblemcoveredbyEq.(2a).
Fig
(2)position-fixingofthecharacterbracket
Fromthisexamplean