北理工随机信号分析实验报告文档格式.docx
《北理工随机信号分析实验报告文档格式.docx》由会员分享,可在线阅读,更多相关《北理工随机信号分析实验报告文档格式.docx(36页珍藏版)》请在冰豆网上搜索。
;
2、(IBM随机数发生器)
周期
3、(ran0)
由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1若随机变量X具有连续分布函数FX(x),而R为(0,1)均匀分布随机变量,则有
由这一定理可知,分布函数为FX(x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB中产生随机序列的函数
(1)(0,1)均匀分布的随机序列
函数:
rand
用法:
x=rand(m,n)
功能:
产生m×
n的均匀分布随机数矩阵。
(2)正态分布的随机序列
randn
x=randn(m,n)
n的标准正态分布随机数矩阵。
如果要产生服从
分布的随机序列,则可以由标准正态随机序列产生。
(3)其他分布的随机序列
MATLAB上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。
MATLAB中产生随机数的一些函数
3、随机序列的数字特征估计
对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。
这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。
那么,X(n)的均值、方差和自相关函数的估计为
利用MATLAB的统计分析函数可以分析随机序列的数字特征。
(1)均值函数
mean
m=mean(x)
返回按上面第一式估计X(n)的均值,其中x为样本序列x(n)。
(2)方差函数
var
sigma2=var(x)
返回按上面第二式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。
(3)互相关函数
xcorr
c=xcorr(x,y)
c=xcorr(x)
c=xcorr(x,y,'
opition'
)
c=xcorr(x,'
xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。
option选项可以设定为:
'
biased'
有偏估计,即
unbiased'
无偏估计,即按上面第三式估计。
coeff'
m=0时的相关函数值归一化为1。
none'
不做归一化处理。
3、实验容
1、采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。
改变样本个数重新计算。
num=input('
num='
);
n=2^31;
k=2^16+3;
y=zeros(1,num);
x=zeros(1,num);
y
(1)=1;
fori=2:
num
y(i)=mod(k*y(i-1),num);
end
x=y/num;
m=mean(x);
si=var(x);
plot(x,'
k'
xlabel('
n'
ylabel('
x(n)'
axistight;
已知理论值均值为0.5
方差为0.0833
Num=1000
m=
0.4900
>
si
si=
0.0834
NUM=5000
m
0.4950
Num=3000
m
0.4833
0.0832
Num=5000
0.4980
0.0833
2、参数为
的指数分布的分布函数为
利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。
R=rand(1,1000);
lambda=0.5;
x=-log(1-R)/lambda;
Dx=var(x);
[Rm,m]=xcorr(x);
subplot(211);
subplot(212);
plot(m,Rm,'
m'
R(m)'
Dx
Dx=
4.0781
理论上方差的值为1/(0.5^2)=4,实际值为4.1201,因为取样个数有限,导致存在一定偏差。
但大体相近。
3、产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差和相关函数。
x=normrnd(1,2,[1,1000]);
Mx=mean(x);
Mx
Mx=
1.0934
Dx
4.1071
理论上的均值为1,方差为4。
而在实验中得到的均值为1.0934,方差为4.1071。
考虑到取样点有限,误差可以接受,理论值和实验值基本相同。
四、实验体会
本次实验容是随机序列的产生及数字特征估计,通过实验我学习和掌握随机数的产生方法,比如线性同余法,生成已知分布函数的随机数,rand函数等,也实现了对随机序列数字特征的估计,初步达到了实验的预期目的。
实验二随机过程的模拟与数字特征
一、实验目的
1、学习利用MATLAB模拟产生随机过程的方法。
2、熟悉和掌握特征估计的基本方法及其MATLAB实现。
二、实验原理
1、正态分布白噪声序列的产生
MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。
如果N(0,1),则
。
2、相关函数估计
MATLAB提供了函数xcorr用于自相关函数的估计。
xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。
有偏估计。
无偏估计。
m=0时的相关函数值归一化为1。
3、功率谱估计
MATLAB函数periodogram实现了周期图法的功率谱估计。
periodogram
[Pxx,w]=periodogram(x)
[Pxx,w]=periodogram(x,window)
[Pxx,w]=periodogram(x,window,nfft)
[Pxx,f]=periodogram(x,window,nfft,fs)
periodogram(...)
实现周期图法的功率谱估计。
其中:
Pxx为输出的功率谱估计值;
f为频率向量;
w为归一化的频率向量;
window代表窗函数,这种用法对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,下图列出了产生常用窗函数的MATLAB函数。
nfft设定FFT算法的长度;
fs表示采样频率;
三、实验容
1、按如下模型产生一组随机序列
其中
是均值为1,方差为4的正态分布白噪声序列。
估计过程的自相关函数和功率谱。
y=1+2*randn(1,2000);
%产生均值为1,方差为4的正态分布白噪声序列
x
(1)=y
(1);
n=2000;
1:
n
x(i)=0.8*x(i-1)+y(i);
%按题目要求产生随机序列x(n)=0.8x(n-1)+w(n)
end
plot(x);
%画出随机序列x的图形
title('
c=xcorr(x);
%画出x的自相关函数
plot(c);
R(n)'
p=periodogram(x);
plot(p);
%画出x的功率谱
S(w)'
2、设信号为
其中
,
为正态分布白噪声序列,试在N=256和N=1024点时,分别产生随机序列x(n),画出x(n)的波形并估计x(n)的相关函数和功率谱。
(1)N=256时
N=256;
w=randn(1,N);
%产生一长度为256的随机序列
n=1:
N;
x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+w(n);
R=xcorr(x);
%求x的自相关函数
%求x的功率谱
subplot(311);
title('
subplot(312);
plot(R);
subplot(313);
(2)N=1024时
N=1024;
此次试验通过随机过程的模拟和数字特征分析,让我对随机过程、自相关函数、功率谱密度等概念有了更加深刻的认识,我学会了如何使用matlab产生随机序列的自相关函数和功率谱密度的波形。
实验三随机过程通过线性系统的分析
1、理解和分析白噪声通过线性系统后输出的特性。
2、学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
1、白噪声通过线性系统
设连续线性系统的传递函数为H()或H(s),输入白噪声的功率谱密度为SX()=N0/2,那么系统输出的功率谱密度为
SY(
)=|H(
)|2
(3.1)
输出自相关函数为
RY(
)=
H(
(3.2)
输出相关系数为
(3.3)
输出相关时间为
0=
(3.4)
输出平均功率为
E
=
(3.5)
上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性|H(
)|决定,不再是常数。
2、等效噪声带宽
在实际中,常常用一个理想系统等效代替实际系统的H(
),因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为
(3.6)
或
(3.7)
3、线性系统输出端随机过程的概率分布
(1)正态随机过程通过线性系统
若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化
随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;
宽带噪声通过窄带系统,输出近似服从正态分布。
1、仿真一个平均功率为1的白噪声带通系统,白噪声为高斯分布,带通系统的两个截止频率分别为3kHz和4kHz,估计输出的自相关函数和功率谱密度函数。
(假设采样频率为10kHz)
Fs=10000;
%抽样频率为10kHz
x=randn(1000,1);
%产生随机序列
figure
(1);
gridon;
t'
c=xcorr(x,'
%计算相关函数
[pyy,fy]=periodogram(x);
%计算功率谱密度
plot(fy,pyy);
figure
(2);
[x_pdf,x1]=ksdensity(x);
%高斯白噪声的一维概率密度函数
plot(x1,x_pdf);
f=(0:
999)/1000*Fs;
X=fft(x);
mag=abs(X);
%随机序列频谱
plot(f(1:
1000/2),mag(1:
1000/2));
f/Hz'
figure(3);
[b,a]=ellip(10,0.5,50,[3000,4000]*2/Fs);
[H,fy]=freqz(b,a);
%带通滤波器
plot(fy*Fs/(2*pi),abs(H));
H(w)'
y=filter(b,a,x);
[y_pdf,y1]=ksdensity(y);
%滤波后的概率密度
plot(y1,y_pdf);
c2=xcorr(y,'
%滤波后的自相关函数
plot(c2);
figure(4);
Y=fft(y);
magY=abs(Y);
%随机序列滤波后频谱
1000/2),magY(1:
nfft=1024;
index=0:
round(nfft/2-1);
ky=index.*Fs.*nfft;
window=boxcar(length(c2));
[pyy,fy]=periodogram(c2,window,nfft,Fs);
%计算滤波后功率谱密度
y_py=pyy(index+1);
plot(ky,y_py);
2、设白噪声通过下图所示的RC电路,分析输出的统计特性。
(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
(2)采用MATLAB模拟正态分布白噪声通过上述RC电路,观察输入和输出的噪声波形以及输
出噪声的概率密度。
(3)模拟产生均匀分布的白噪声通过上述RC电路,观察输入和输出的噪声波形以及输出噪声
的概率密度。
(4)改变RC电路的参数(电路的RC值),重做
(2)和(3),与之前的结果进行比较。
(1)由图中所示电路,根据电路分析的相关知识,可推导出
输出功率谱密度为:
相关函数为:
相关时间为:
等效噪声带宽为:
(2)实验代码及结果:
R=100;
C=0.01;
b=1/(R*C);
500;
h=b*exp(-n*b);
x=randn(1,1000);
%产生一正态分布的白噪声
y=conv(x,h);
%求输出噪声
[fy,yi]=ksdensity(y);
%求输出噪声的概率密度
plot(y);
y(n)'
plot(fy);
输出噪声的概率密度'
(3)实验代码及结果:
x=rand(1,1000);
%产生一均匀分布的白噪声
输出噪声的概率密度(均匀分布)'
(4)改变RC值
R=1000,C=0.01;
%正态分布时
R=1000;
%均匀分布时
改变R、C的值为:
R=10,C=0.01;
R=10;
由图可得,系统相关时间与系统带宽成反比。
另外,由输入输出波形可以看出,正态随机过程通过一个线性系统后,输出仍服从正态分布。
而对于任意分布的白噪声,通过一个线性系统后,输出也服从正态分布。
本次实验容是随机过程通过线性系统的分析。
通过这次试验我对白噪声通过线性系统后输出的特性有了更加深刻的理解,并且学习和掌握随机过程通过线性系统后的特性,验证了随机过程的正态化问题,对matlab的使用也有了更深的体会。
实验四窄带随机过程的产生及其性能测试
1、基于随机过程的莱斯表达式产生窄带随机过程。
2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、相关函数及功率谱密度等。
1.窄带随机过程的莱斯表达式
任何一个实平稳窄带随机过程X(t)都可以表示为
上式称为莱斯表达式,根据上式可以模拟产生窄带随机过程,具体过程下图所示。
2.窄带随机过程包络与相位的概率密度
包络的概率密度为
,服从瑞利分布。
相位的概率密度为
,呈均匀分布。
3.窄带随机过程包络平方的概率密度
包络平方的概率密度为
0,为指数概率密度函数。
1、按上图所示结构框图,基于随机过程的莱斯表达式,用MATLAB产生一满足条件的窄带随机过程。
1000;
h=exp(-n);
%低通滤波器
c1=randn(1,1000);
%正态分布的高斯白噪声
a=conv(c1,h);
%通过低通滤波器
c2=randn(1,1000);
b=conv(c2,h);
fc=10000;
x=zeros(1,1000);
fori=1:
1000
x(i)=a(i)*cos(2*pi*fc*i)-b(i)*sin(2*pi*fc*i);
%与正弦或余弦函数卷积再相加