模具机械设备激光焊接基本技术应用原理.docx

上传人:b****1 文档编号:1795512 上传时间:2022-10-24 格式:DOCX 页数:9 大小:43.09KB
下载 相关 举报
模具机械设备激光焊接基本技术应用原理.docx_第1页
第1页 / 共9页
模具机械设备激光焊接基本技术应用原理.docx_第2页
第2页 / 共9页
模具机械设备激光焊接基本技术应用原理.docx_第3页
第3页 / 共9页
模具机械设备激光焊接基本技术应用原理.docx_第4页
第4页 / 共9页
模具机械设备激光焊接基本技术应用原理.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

模具机械设备激光焊接基本技术应用原理.docx

《模具机械设备激光焊接基本技术应用原理.docx》由会员分享,可在线阅读,更多相关《模具机械设备激光焊接基本技术应用原理.docx(9页珍藏版)》请在冰豆网上搜索。

模具机械设备激光焊接基本技术应用原理.docx

模具机械设备激光焊接基本技术应用原理

激光焊接基本技术应用原理

 

 

【最新资料,WORD文档,可编辑修改】

 

一、激光基本原理

  1、LASER是什么意思

  LightAmplificationbyStimulatedEmissionofRadiation(通过诱导放出实现光能增幅)的英语开头字母

  2、激光产生的原理

  激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。

处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。

  为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。

含有钕(ND)的YAG结晶体发生的激光是一种人眼看不见的波长为1.064um的近红外光。

这种光束在微弱的受激发情况下,也能实现连续发振。

YAG晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。

  3、激光的主要特长

  a、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光(波长、频率)

  b、方向性――激光传播时基本不向外扩散。

  c、相干性――激光的位相(波峰和波谷)很有规律,相干性好。

  d、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。

  二、YAG激光焊接

  激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。

通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。

  常用的激光焊接方式有两种:

脉冲激光焊和连续激光焊。

前者主要用于单点固定连续和薄件材料的焊接。

后者主要用于大厚件的焊接和切割。

  l、激光焊接加工方法的特征

  A、非接触加工,不需对工件加压和进行表面处理。

  B、焊点小、能量密度高、适合于高速加工。

  C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。

  D、不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在空气中产生X射线的危险。

  E、与接触焊工艺相比.无电极、工具等的磨损消耗。

  F、无加工噪音,对环境无污染。

  G、微小工件也可加工。

此外,还可通过透明材料的壁进行焊接。

  H、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。

  I、很容易改变激光输出焦距及焊点位置。

  J、很容易搭载到自动机、机器人装置上。

  K、对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。

  2、脉冲激光焊接的机理

  传热溶化焊接是指当激光束照射到材料的表面上时,材料吸收光能而加热熔化。

材料表面层的热以传导方式继续向材料深处传递,直至将两个待焊件的接触面互溶并焊接在一起。

  深穿入熔化焊接是指当更大功率密度的激光束照射到材料上时,材料被加工熔化以至气化,产生较大的蒸汽压,在蒸汽的压力的作用下,溶化金属被挤在周围使照射处(熔池)呈现出一个凹坑,随着激光束的继续照射,凹坑越来越深,并穿入到另一个工件中。

激光停止照射后,被排挤在凹坑周围的溶化金属重新流回到凹坑里,凝固后将工件焊接在一起。

  这两种激光焊接机理,与功率密度、照射时间、材料性质、焊接方式等因素有关。

当功率密度较低、照射时间较长而焊件较薄时,通常以传热溶化机理为主进行。

反之,则是以深穿入熔化机理为主进行

激光焊接技术应用

引言

  激光焊接是激光加工材料加工技术应用的重要方面之一。

70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。

由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的YAG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。

目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。

  一、激光焊接的质量与特点

  激光焊接原理:

激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。

激光焊接的机理有两种:

  1、热传导焊接

  当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。

  2、激光深熔焊

  当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。

  这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。

这两种方式最基本的区别在于:

前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。

传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。

传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。

激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。

  1、激光焊接的焊缝形状

  对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:

l,最高可达10:

1。

四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形状的比较,对比的结论有以下几点:

(1)激光焊和电子束焊比TIG和等离子焊的主要优点相似:

焊缝窄、穿透深、焊缝两边平行、热影响区小;

(2)TIG和等离子焊投资少,广泛应用了许多年,经验比较多;(3)激光焊和电子束焊在高生产率方面优势大得多。

  但电子束焊须在真空室或局部真空中进行。

也可在空气中,但熔透能力比激光焊差;(4)激光焊和电子束焊,焊缝窄且热影响区小,因而变形最小。

  2、激光焊接焊缝的组织性能

  采用大功率激光光束焊接时,因其能量密度极高,被焊工件经受快速加热和冷却的热循环作用,使得焊缝和热影响区区域极窄,其硬度远远高于母材,因此,该区域的塑性相对较低。

为了降低接头区域的硬度,应采取焊接前预热和焊后回火等相应的工艺措施。

激光回火是一种在激光焊后随即采用非聚焦的低能量密度光束对焊道进行多道扫描从而降低焊缝硬度的新工艺。

激光焊接金属及热影响区的组织和硬度是由化学成分和冷却速度决定的。

在激光焊接中,现行焊接工艺一般不需要填充金属。

在这种情况下,焊缝的组织和硬度主要由钢板的化学成分和激光照射条件来决定。

采用填充焊丝的激光焊接由于可以选择任意合金成分的焊丝作为最佳的焊缝过渡合金,因而可以保证两侧母材的联结具有最佳性能。

可以对高熔点、高热导率、物理性质差异较大的异种或同种金属材料进行焊接,可以得到无污染、杂质少的焊缝。

激光焊接加热速度快,焊接熔池迅速冷却,与普通的常规焊接在金相组织上有着很大的区别。

  二、激光焊接的应用领域

  1、制造业应用

  激光拼焊(TailoredBlandLaserWelding)技术在国外轿车制造中得到广泛的应用,据统计,2000年全球范围内剪裁坯板激光拼焊生产线超过100条,年产轿车构件拼焊坯板7000万件,并继续以较高速度增长。

国内生产的引进车型Passat,Buick,Audi等也采用了一些剪裁坯板结构。

日本以CO2激光焊代替了闪光对焊进行制钢业轧钢卷材的连接,在超薄板焊接的研究,如板厚100微米以下的箔片,无法熔焊,但通过有特殊输出功率波形的YAG激光焊得以成功,显示了激光焊的广阔前途。

日本还在世界上首次成功开发了将YAG激光焊用于核反应堆中蒸气发生器细管的维修等,在国内苏宝蓉等还进行了齿轮的激光焊接技术。

  2、粉末冶金领域

  随着科学技术的不断发展,许多工业技术上对材料特殊要求,应用冶铸方法制造的材料已不能满足需要。

由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。

在八十年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊的方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。

  3、汽车工业

  20世纪80年代后期,千瓦级激光成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。

德国奥迪、奔驰、大众、瑞典的沃尔沃等欧洲的汽车制造厂早在20世纪80年代就率先采用激光焊接车顶、车身、侧框等钣金焊接,90年代美国通用、福特和克莱斯勒公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。

意大利菲亚特在大多数钢板组件的焊接装配中采用了激光焊接,日本的日产、本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用得越来越多,根据美国金属市场统计,至2002年底,激光焊接钢结构的消耗将达到70000t比1998年增加3倍。

根据汽车工业批量大、自动化程度高的特点,激光焊接设备向大功率、多路式方向发展。

在工艺方面美国Sandia国家实验室与PrattWitney联合进行在激光焊接过程中添加粉末金属和金属丝的研究,德国不莱梅应用光束技术研究所在使用激光焊接铝合金车身骨架方面进行了大量的研究,认为在焊缝中添加填充余属有助于消除热裂纹,提高焊接速度,解决公差问题,开发的生产线已在奔驰公司的工厂投入生产。

  4、电子工业

  激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。

由于激光焊接热影响区小加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示出独特的优越性,在真空器件研制中,激光焊接也得到了应用,如钼聚焦极与不锈钢支持环、快热阴极灯丝组件等。

传感器或温控器中的弹性薄壁波纹片其厚度在0.05-0.1mm,采用传统焊接方法难以解决,TIG焊容易焊穿,等离子稳定性差,影响因素多而采用激光焊接效果很好,得到广泛

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 化学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1