金属材料学答案戴起勋复试.docx

上传人:b****2 文档编号:1794185 上传时间:2022-10-24 格式:DOCX 页数:13 大小:30.67KB
下载 相关 举报
金属材料学答案戴起勋复试.docx_第1页
第1页 / 共13页
金属材料学答案戴起勋复试.docx_第2页
第2页 / 共13页
金属材料学答案戴起勋复试.docx_第3页
第3页 / 共13页
金属材料学答案戴起勋复试.docx_第4页
第4页 / 共13页
金属材料学答案戴起勋复试.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

金属材料学答案戴起勋复试.docx

《金属材料学答案戴起勋复试.docx》由会员分享,可在线阅读,更多相关《金属材料学答案戴起勋复试.docx(13页珍藏版)》请在冰豆网上搜索。

金属材料学答案戴起勋复试.docx

金属材料学答案戴起勋复试金属材料学答案戴起勋复试金属材料学答案戴起勋(复试)第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?

答:

S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。

S能形成FeS,其熔点为989,钢件在大于1000的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

2.钢中的碳化物按点阵结构分为哪两大类?

各有什么特点?

答:

简单点阵结构和复杂点阵结构简单点阵结构的特点:

硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:

硬度较低、熔点较低、稳定性较差。

3.简述合金钢中碳化物形成规律。

答:

当rC/rM时,形成复杂点阵结构;当rC/rM400,Me开始重新分布。

非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。

6.有哪些合金元素强烈阻止奥氏体晶粒的长大?

阻止奥氏体晶粒长大有什么好处?

答:

Ti、Nb、V等强碳化物形成元素:

能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。

7.哪些合金元素能显著提高钢的淬透性?

提高钢的淬透性有何作用?

答:

在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:

Mn、Mo、Cr、Si、Ni等。

作用:

一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

8.能明显提高回火稳定性的合金元素有哪些?

提高钢的回火稳定性有什么作用?

答:

提高回火稳定性的合金元素:

Cr、Mn、Ni、Mo、W、V、Si作用:

提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。

9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?

如何减轻和消除?

答:

第一类回火脆性:

脆性特征:

不可逆;与回火后冷速无关;断口为晶界脆断。

产生原因:

钢在200-350回火时,Fe3C薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。

防止措施:

降低钢中杂质元素的含量;用Al脱氧或加入Nb、V、Ti等合金元素细化奥氏体晶粒;加入Cr、Si调整温度范围;采用等温淬火代替淬火回火工艺。

第二类回火脆性:

脆性特征:

可逆;回火后满冷产生,快冷抑制;断口为晶界脆断。

产生原因:

钢在450-650回火时,杂质元素Sb、S、As或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。

高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。

防止措施:

降低钢中的杂质元素;加入能细化A晶粒的元素加入适量的Mo、W元素;避免在第二类回火脆性温度范围回火。

10.就合金元素对铁素体力学性能、碳化物形成倾向、奥氏体晶粒长大倾向、淬透性、回火稳定性和回火脆性等几个方面总结下列元素的作用:

Si、Mn、Cr、Mo、W、V、Ni。

答:

Si:

Si是铁素体形成元素,固溶强化效果显著;Si是非碳化物形成元素,增大钢中的碳活度,所以含Si钢的脱C倾向和石墨化倾向较大;Si量少时,如果以化合物形式存在,则阻止奥氏体晶粒长大,从而细化A晶粒,同时增大了钢的强度和韧性;Si提高了钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

Si提高钢的低温回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;Si能够防止第一类回火脆性。

Mn:

Mn强化铁素体,在低合金普通结构钢中固溶强化效果较好;Mn是奥氏体形成元素,促进A晶粒长大,增大钢的过热敏感性;Mn使A等温转变曲线右移,提高钢的淬透性;Mn提高钢的回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;Mn促进有害元素在晶界上的偏聚,增大钢回火脆性的倾向。

Cr:

Cr是铁素体形成元素,固溶强化效果显著;Cr是碳化物形成元素,能细化晶粒,改善碳化物的均匀性;Cr阻止相变时碳化物的形核长大,所以提高钢的淬透性;Cr提高回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;Cr促进杂质原子偏聚,增大回火脆性倾向;Mo:

是铁素体形成元素,固溶强化效果显著;是较强碳化物形成元素,所以能细化晶粒,改善碳化物的均匀性,大大提高钢的回火稳定性;阻止奥氏体晶粒长大,细化A晶粒,同时增大了钢的强度和韧性;能提高钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

能有效地抑制有害元素的偏聚,是消除或减轻钢第二类回火脆性的有效元素。

V:

是铁素体形成元素,固溶强化效果显著;是强碳化物形成元素,形成的VC质点稳定性好,弥散分布,能有效提高钢的热强性和回火稳定性;阻止A晶粒长大的作用显著,细化A晶粒,同时增大了钢的强度和韧性;提高钢的淬透性,消除回火脆性。

Ni:

是奥氏体形成元素,促进晶粒长大,增大钢的过热敏感性;是非碳化物形成元素,增大钢中的碳活度,所以含Ni钢的脱C倾向和石墨化倾向较大;对A晶粒长大的影响不大;能提高钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

提高回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;促进钢中有害元素的偏聚,增大钢的回火脆性。

总结:

SiMnCrMoWVNiF的力学性能K形成倾向A晶粒长大倾向淬透性回火稳定性回火脆性增加强度,减小韧性增加强度、韧性同上增加强度,减小韧性中强K形成元素阻碍作用中等增加提高大大降低同上同上增加强度、韧性非K形成元素影响不大增加影响不大促进非K形弱K形中强K成元素成元素形成元素细化增加促进增加阻碍作用中等增加提高促进中强K强K形形成元成元素素阻碍作用中等增加提高降低大大阻碍增加提高降低提高低提高温回火推迟低温回脆,促进高温回脆促进11.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:

40Cr、40CrNi、40CrMn、40CrNiMo答:

淬透性:

40CrNiMo40CrMn40CrNi40Cr回火稳定性:

40CrNiMo40CrMn40CrNi40Cr奥氏体晶粒长大倾向:

40CrMn40Cr40CrNi40CrNiMo韧性:

40CrNiMo40CrNi40CrMn40Cr回火脆性:

40CrNi40CrMn40Cr40CrNiMo12.为什么W、Mo、V等元素对珠光体转变阻止作用大,而对贝氏体转变影响不大?

答:

对于珠光体转变,不仅需要C的扩散和重新分布,而且还需要W、Mo、V等K形成元素的扩散,而间隙原子碳在A中的扩散激活能远小于W、Mo、V等置换原子的扩散激活能,所以W、Mo、V等K形成元素扩散是珠光体转变时碳化物形核的控制因素。

V主要是通过推迟碳化物形核与长大来提高过冷奥氏体的稳定性W、Mo除了推迟碳化物形核与长大外,还增大了固溶体原子间的结合力、铁的自扩散激活能,减缓了C的扩散。

贝氏体转变是一种半扩散型相变,除了间隙原子碳能作长距离扩散外,W、Mo、V等置换原子都不能显著地扩散。

W、Mo、V增加了C在y相中的扩散激活能,降低了扩散系数,推迟了贝氏体转变,但作用比Cr、Mn、Ni小。

13.为什么钢的合金化基本原则是“复合加入”?

试举两例说明合金元素复合作用的机理。

答:

因为合金元素能对某些方面起积极的作用,但许多情况下还有不希望的副作用,因此材料的合金化设计都存在不可避免的矛盾。

合金元素有共性的问题,但也有不同的个性。

不同元素的复合,其作用是不同的,一般都不是简单的线性关系,而是相互补充,相互加强。

所以通过合金元素的复合能够趋利避害,使钢获得优秀的综合性能。

例子:

Nb-V复合合金化:

于Nb的化合物稳定性好,其完全溶解的温度可达1325-1360。

所以在轧制或锻造温度下仍有未溶的Nb,能有效地阻止高温加热时A晶粒的长大,而V的作用主要是沉淀析出强化。

Mn-V复合:

Mn有过热倾向,而V是减弱了Mn的作用;Mn能降低碳活度,使稳定性很好的VC溶点降低,从而在淬火温度下VC也能溶解许多,使钢获得较好的淬透性和回火稳定性。

14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?

而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?

答:

钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。

钒在钢中主要以碳化物的形式存在。

其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。

当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。

15.怎样理解“合金钢与碳钢的强度性能差异,主要不在于合金元素本身的强化作用,而在于合金元素对钢相变过程的影响。

并且合金元素的良好作用,只有在进行适当的热处理条件下才能表现出来”?

16.合金元素提高钢的韧度主要有哪些途径?

答:

细化奥氏体晶粒-如Ti、V、Mo提高钢的回火稳定性-如强K形成元素改善基体韧度-Ni细化碳化物-适量的Cr、V降低或消除钢的回火脆性W、Mo在保证强度水平下,适当降低含碳量,提高冶金质量通过合金化形成一定量的残余奥氏体、40CrNi、40CrNiMo钢,其油淬临界淬透直径Dc分别为25-30mm、40-60mm、60-100mm,试解释淬透性成倍增大的现象。

答:

在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:

Mn、Mo、Cr、Si、Ni等。

Cr、Ni、Mo都能提高淬透性,40Cr、40CrNi、40CrNiMo单一加入到复合加入,淬透性从小到大。

较多的Cr和Ni的适当配合可大大提高钢的淬透性,而Mo提高淬透性的作用非常显著。

18.钢的强化机制有哪些?

为什么一般钢的强化工艺都采用淬火-回火?

答:

四种强化机制:

固溶强化、位错强化、细晶强化和第二相弥散强化。

因为淬火+回火工艺充分利用了细晶强化,固溶强化、位错强化、第二相强化这四种强化机制。

(1)淬火后获得的马氏体是碳在-Fe中的过饱和间隙固溶体,碳原子起到了间隙固溶强化效应。

(2)马氏体形成后,奥氏体被分割成许多较小的取向不同的区域,产生了细晶强化作用。

(3)淬火形成马氏体时,马氏体中的位错密度增高,从而产生位错强化效应。

(4)淬火后回火时析出的碳化物造成强烈的第二相强化,同时也使钢的韧性得到了改善。

综上所述:

无论是碳钢还是合金钢,在淬火-回火时充分利用了强化材料的四种机制,从而使钢的机械性能的潜力得到了充分的发挥。

所以获得马氏体并进行相应的回火是钢的最经济最有效的综合强化手段。

19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。

答:

因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于%,所以含%C、13%Cr的40Cr13不锈钢就属于过共析钢。

Cr使E点左移,意味着出现莱氏体的碳含量减小。

在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。

但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。

20.试解释含Mn稍高的钢易过热;而含Si的钢淬火加热温度应稍高,且冷作硬化率较高,不利于冷变形加工。

答:

Mn是奥氏体形成元素,降低钢的A1温度,促进晶粒长大,增大钢的过热敏感性;Si是铁素体形成元素,提高了钢的A1温度,所以含Si钢往往要相应地提高淬火温度。

冷作硬化率高,材料的冷成型性差。

合金元素溶入基体,点阵产生不同程度的畸变,使冷作硬化率提高,钢的延展性下降。

21.什么叫钢的内吸附现象?

其机理和主要影响

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1