PLC梯形图基本原理Word文档格式.docx

上传人:b****4 文档编号:17804969 上传时间:2022-12-10 格式:DOCX 页数:25 大小:34.05KB
下载 相关 举报
PLC梯形图基本原理Word文档格式.docx_第1页
第1页 / 共25页
PLC梯形图基本原理Word文档格式.docx_第2页
第2页 / 共25页
PLC梯形图基本原理Word文档格式.docx_第3页
第3页 / 共25页
PLC梯形图基本原理Word文档格式.docx_第4页
第4页 / 共25页
PLC梯形图基本原理Word文档格式.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

PLC梯形图基本原理Word文档格式.docx

《PLC梯形图基本原理Word文档格式.docx》由会员分享,可在线阅读,更多相关《PLC梯形图基本原理Word文档格式.docx(25页珍藏版)》请在冰豆网上搜索。

PLC梯形图基本原理Word文档格式.docx

在启动开关X5按下后,Y3动作,一旦Y3动作后,即使放开启动开关(X5变成Off)Y3因为自身的接点反馈而仍可继续保持动作(此即为自我保持回路),其动作可以下表表示:

装置状态

动作顺序

X5开关

X6开关

Y3状态

1

不动作

Off

2

动作

On

3

4

5

由上表可知在不同顺序下,虽然输入状态完全一致,其输出结果也可能不一样,如表中的动作顺序1和3其X5和X6开关均为不动作,在状态1的条件下Y3为Off,但状态3时Y3却为On,此种Y3输出状态送回当输入(即所谓的反馈)而使回路具有顺序控制效果是梯形图回路的主要特性。

在本节范例中仅列举A、B接点和输出线圈作说明,其它装置的用法和此相同,请参考第3章〝基本指令〞。

1.2传统梯形图及PLC梯形图的差异

虽然传统梯形图和PLC梯形图的工作原理是完全一致的,但实际上PLC仅是利用微电脑(Microcomputer),来仿真传统梯形图的动作,亦即利用扫描的方式逐一地查看所有输入装置及输出线圈的状态,再将此等状态依梯形图的组态逻辑作演算和传统梯形图一样的输出结果,但因Microcomputer只有一个,只能逐一地查看梯形图程序,并依该程序及输入/出状态演算输出结果,再将结果送到输出接口,然后又重新读取输入状态⇨演算⇨输出,如此周而复始地循环执行上述动作,此一完整的循环动作所费的时间称之为扫描周期,其时间会随着程序的增大而加长,此扫描周期将造成PLC从输入检测到输出反应的延迟,延迟时间愈长对控制所造成的误差愈大,甚至造成无法胜任控制要求的情况,此时就必须选用扫描速度更快的PLC,因此PLC的扫描速度是PLC的重要规格,随着微电脑及ASIC(特定用途IC)技术的发展,现今的PLC在扫描速度上均有极大的改善,下图为PLC的梯形图程序扫描的示意图。

依梯形图组态演算出输出结果(尚未送到外界输出点,但内部装置会实时输出)

周而复始的执行

除上述扫描周期差异外,PLC梯形图和传统梯形图尚有如下的〝逆向回流〞的差异,如下图传统梯形图所示图中,若X0,X1,X4,X6为导通,其它为不导通,在传统的梯形图回路上输出Y0会如虚线所示形成回路而为On。

但在PLC梯形图中,因演算梯形图程序系由上而下,由左而右地扫描。

在同样输入条件下,以梯形图编辑工具(WPLSoft)会检查出梯形图错误。

传统梯形图的逆向回流:

PLC梯形图的逆向回流:

检查出梯形图形第三行错误

1.3梯形图编辑说明

梯形图为广泛应用在自动控制的一种图形语言,这是沿用电气控制电路的符号所组合而成的一种图形,透过梯形图编辑器画好梯形图形后,PLC的程序设计也就完成,以图形表示控制的流程较为直观,易为熟悉电气控制电路的技术人员所接受。

在梯形图形很多基本符号及动作都是根据在传统自动控制配电盘中常见的机电装置如按钮、开关、继电器(Relay)、定时器(Timer)及计数器(Counter)等等。

PLC的内部装置:

PLC内部装置的种类及数量随各厂牌产品而不同。

内部装置虽然沿用了传统电气控制电路中的继电器、线圈及接点等名称,但PLC内部并不存在这些实际物理装置,它对应的只是PLC内部存储器的一个基本单元(一个位,bit),若该位为1表示该线圈得电,该位为0表示线圈不得电,使用常开接点(NormalOpen,NO或A接点)即直接读取该对应位的值,若使用常闭接点(NormalClose,NC或B接点)则取该对应位值的反相。

多个继电器将占有多个位(bit),8个位,组成一个字节(或称为一个字节,byte),二个字节,称为一个字(word),两个字,组合成双字(doubleword)。

当多个继电器一并处理时(如加/减法、移位等)则可使用字节、字或双字,且PLC内部的另两种装置:

定时器及计数器,不仅有线圈,而且还有计时值及计数值,因此还要进行一些数值的处理,这些数值多属于字节、字或双字的形式。

由以上所述,各种内部装置,在PLC内部的数值储存区,各自占有一定数量的储存单元,当使用这些装置,实际上就是对相应的储存内容以位或字节或字的形式进行读取。

PLC的基本内部装置介绍:

(详细说明请参考第2章DVP-PLC各种装置功能)

装置种类

功能说明

输入继电器

(InputRelay)

输入继电器是PLC与外部输入点(用来与外部输入开关连接并接受外部输入信号的端子)对应的内部存储器储存基本单元。

它由外部送来的输入信号驱动,使它为0或1。

用程序设计的方法不能改变输入继电器的状态,即不能对输入继电器对应的基本单元改写,亦无法由HPP/WPLSoft作强行On/Off动作(SA/SX/SC/EH/EH2/SV系列主机可仿真输入继电器X作强行On/Off的动作,但此时外部输入点状态更新动作关闭,亦即外部输入信号的状态不会被读入至PLC内部相对的装置内存,只限主机的输入点,扩展的输入点仍依正常模式动作)。

它的接点(A、B接点)可无限制地多次使用。

无输入信号对应的输入继电器只能空着,不能移作它用。

☞装置表示:

X0,X1,…X7,X10,X11,…,装置符号以X表示,顺序以8进制编号。

在主机及扩展上均有输入点编号的标示。

输出继电器

(OutputRelay)

输出继电器是PLC与外部输出点(用来与外部负载作连接)对应的内部存储器储存基本单元。

它可以由输入继电器接点、内部其它装置的接点以及它自身的接点驱动。

它使用一个常开接点接通外部负载,其接点也像输入接点一样可无限制地多次使用。

无输出对应的输出继电器,它是空着的,如果需要,它可以当作内部继电器使用。

Y0,Y1,…Y7,Y10,Y11,…,装置符号以Y表示,顺序以8进制编号。

在主机及扩展上均有输出点编号的标示。

内部辅助继电器

(InternalRelay)

内部辅助继电器与外部没有直接联系,它是PLC内部的一种辅助继电器,其功能与电气控制电路中的辅助(中间)继电器一样,每个辅助继电器也对应着内存的一基本单元,它可由输入继电器接点、输出继电器接点以及其它内部装置的接点驱动,它自己的接点也可以无限制地多次使用。

内部辅助继电器无对外输出,要输出时请通过输出点。

M0,M1,…,M4095,装置符号以M表示,顺序以10进制编号。

步进点

(Step)

DVPPLC提供一种属于步进动作的控制程序输入方式,利用指令STL控制步进点S的转移,便可很容易写出控制程序。

如果程序中完全没有使用到步进程序时,步进点S亦可被当成内部辅助继电器M来使用,也可当成警报点使用。

S0,S1,…S1023,装置符号以S表示,顺序以10进制编号。

定时器

(Timer)

定时器用来完成定时的控制。

定时器含有线圈、接点及定时值寄存器,当线圈受电,等到达预定时间,它的接点便动作(A接点闭合,B接点开路),定时器的定时值由设定值给定。

每种定时器都有规定的时钟周期(定时单位:

1ms/10ms/100ms)。

一旦线圈断电,则接点不动作(A接点开路,B接点闭合),原定时值归零。

T0,T1,…,T255,装置符号以T表示,顺序以10进制编号。

不同的编号范围,对应不同的时钟周期。

计数器

(Counter)

计数器用来实现计数操作。

使用计数器要事先给定计数的设定值(即要计数的脉冲数)。

计数器含有线圈、接点及计数储存器,当线圈由Off→On,即视为该计数器有一脉冲输入,其计数值加一,有16位及32位及高速用计数器可供使用者选用。

C0,C1,…,C255,装置符号以C表示,顺序以10进制编号。

数据寄存器

(Dataregister)

PLC在进行各类顺序控制及定时值及计数值有关控制时,常常要作数据处理和数值运算,而数据寄存器就是专门用于储存数据或各类参数。

每个数据寄存器内有16位二进制数值,即存有一个字,处理双字用相邻编号的两个数据寄存器。

D0,D1,…,D9999,装置符号以D表示,顺序以10进制编号。

文件寄存器

()

PLC数据处理和数值运算所需的数据寄存器不足时,可利用文件寄存器来储存数据或各类参数。

每个文件寄存器内为16位,即存有一个字,处理双字用相邻编号的两个文件寄存器。

文件寄存器SA/SX/SC系列机种一共有1,600个,EH/EH2/SV系列机种一共有10,000个,文件寄存器并没有实际的装置编号,因此需透过指令API148MEMR、API149MEMW或是透过周边装置HPP02及WPLSoft来执行文件寄存器的读写功能。

K0~K9,999,无装置符号,顺序以10进制编号。

变址寄存器

(Indexregister)

E、F与一般的数据寄存器一样的都是16位的数据寄存器,它可以自由的被写入及读出,可用于字装置、位装置及常量来作间接寻址功能。

E0~E7、F0~F7,装置符号以E、F表示,顺序以10进制编号。

梯形图组成图形及说明:

梯形图形结构

指令解说

指令

使用装置

常开开关,A接点

LD

X、Y、M、S、T、C

常闭开关,B接点

LDI

串接常开

AND

并接常开

OR

并接常闭

ORI

上升沿触发开关

LDP

下降沿触发开关

LDF

上升沿触发串接

ANDP

下降沿触发串接

ANDF

上升沿触发并接

ORP

下降沿触发并接

ORF

区块串接

ANB

区块并接

ORB

多重输出

MPS

MRD

MPP

线圈驱动输出指令

OUT

Y、M、S

步进梯形

STL

S

基本指令、应用指令

应用指令

请参考第3章的基本指令(RST/SET及CNT/TMR)说明及第5~10章应用指令

反向逻辑

INV

区块:

所谓的区块是指两个以上的装置做串接或并接的运算组合而形成的梯形图形,依其运算性质可产生并联区块及串联区块。

串联区块:

并联区块:

分支线及合并线:

往下的垂直线一般来说是对装置来区分,对于左边的装置来说是合并线(表示左边至少有两行以上的回路与此垂直线相连接),对于右边的装置及区块来是分支线(表示此垂直线的右边至少有两行以上的回路相连接)。

网络:

由装置、各种区块所组成的完整区块网络,其垂直线或是连续线所能连接到的区块或是装置均属于同一个网络。

独立的网络:

不完整的网络:

1.4PLC梯形图的编辑要点

程序编辑方式是由左母线开始至右母线(在WPLSoft编辑省略右母线的绘制)结束,一行编完再换下一行,一行的接点个数最多能有11个,若是还不够,会产生连续线继续连接,进而续接更多的装置,连续编号会自动产生,相同的输入点可重复使用。

如下图所示:

梯形图程序的运作方式是由左上到右下的扫描。

线圈及应用指令运算框等属于输出处理,在梯形图形中置于最右边。

以下图为例,我们来逐步分析梯形图的流程顺序,右上角的编号为其顺序。

指令顺序解析:

X0

M0

X1

X3

M1

Y1

X4

6

T0

M3

7

8

TMR

T0K10

梯形图各项基本结构详述

1.LD(LDI)指令:

一区块的起始给予LD或LDI的指令。

LDP及LDF的命令结构也是如此,不过其动作状态有所差别。

LDP、LDF在动作时是在接点导通的上升沿或下降沿时才有动作。

2.AND(ANI)指令:

单一装置接于一装置或一区块的串联组合。

ANDP、ANDF的结构也是如此,只是其动作发生情形是在上升及下降沿时。

3.OR(ORI)指令:

单一装置接于一装置或一区块的组合。

ORP、ORF也是相同的结构,不过其动作发生时是在上升及下降沿。

4.ANB指令:

一区块与一装置或一区块的串接组合。

5.ORB指令:

一区块与一装置或与一区块并接的组合。

ANB及ORB运算,如果有好几个区块结合,应该由上而下或是由左而右,依序合并成区块或是网络。

6.MPS、MRD、MPP指令:

多重输出的分支点记忆,这样可以产生多个并且具有变化的不同输出。

MPS指令是分支点的开始,所谓分支点是指水平线及垂直线相交之处,我们必须经由同一垂直线的接点状态来判定是否应该下接点记忆指令,基本上每个接点都可以下记忆指令,但是考虑到PLC的运作方便性以及其容量的限制,所以有些地方在梯形图转换时就会有所省略,可以由梯形图的结构来判断是属于何种接点储存指令。

MPS可以由“┬”来做分辨,一共可以连续下此指令8次。

MRD指令是分支点记忆读取,因为同一垂直线的逻辑状态是相同的,所以为了继续其它的梯形图的解析进行,必须要再把原接点的状态读出。

MRD可以由“├”来做分辨。

MPP指令是将最上层分支点开始的状态读出并且把它自堆栈中读出(Pop),因为它是同一垂直线的最后一笔,表示此垂直线的状态可以结束了。

⏹MPP可以由“└”来做判定。

基本上使用上述的方式解析不会有误,但是有时相同的状态输出,编译程序会将其省略,以右图说明:

7.STL指令:

这是用来做为顺序功能图(SFC,SequentialFunctionChart)设计语法的指令。

此种指令可以让我们程序设计人员在程序规划时,能够像平时画流程图时一样,对于程序的步序更为清楚,更具可读性,如下图所示,可以很清楚地看出所要规划的流程顺序,每个步进点S转移至下一个步进点后,原步进点会执行”断电”的动作,我们可以依据这种流程转换成其右图的PLC梯形图型式,称之为步进梯形图。

8.RET指令在步进梯形程序完成之后要加上RET指令,而RET也一定要加在STL的后面,如下图所示:

步进梯形结构请参考第4章步进梯形指令[STL]、[RET]。

1.5PLC指令及各项图形结构的整合转换

⏹语法模糊结构

正确的梯形图解析过程应该是由左至右,由上而下解析合并,然而有些指令不按照此原则一样可以达到相同的梯形图,在此特别叙述于后:

范例程序一:

如下图的梯形图形,若使用指令程序表示,有两种方法表示,其动作结果相同。

理想方法

不理想方法

X2

X5

两种指令程序,转换成梯形图其图形都一样,为什么会一个较另一个好呢?

问题就在主机的运算动作,第一个:

是一个区块一个区块合并,第二个:

则是最后才合并,虽然程序代码的最后长度都相同,但是由于在最后才合并(ANB作合并动作,但ANB指令不能连续使用超过8次),则必须要把先前所计算出的结果储存起来,现在只有两个区块,主机可以允许,但是要是区块超过主机的限制,就会出现问题,所以最好的方式就是一区块一建立完就进行区块合并的指令,而且这样做对于程序规划者的逻辑顺序也比较不会乱。

范例程序二:

如下图的梯形图形,若使用指令程序表示,亦有两种方法表示,其动作结果相同。

这两个程序解析就有明显的差距,不但程序代码增加,主机的运算记忆也要增加,所以最好是能够按照所定义的顺序来撰写程序。

⏹梯形图的错误图形

在编辑梯形图形时,虽然可以利用各种梯形符号组合成各种图形,由于PLC处理图形程序的原则是由上而下,由左至右,因此在绘制时,要以左母线为起点,右母线为终点(WPLSoft梯形图编辑区将右母线省略),从左向右逐个横向写入。

一行写完,自上而下依次再写下一行。

以下为常见的各种错误图形:

不可往上做OR运算

输入起始至输出的信号回路有“回流”存在

应该先由右上角输出

要做合并或编辑应由左上往右下,虚线括处的区块应往上移

不可与空装置做并接运算

空装置也不可以与别的装置做运算

中间的区块没有装置

串联装置要与所串联的区块水平方向接齐

LabelP0的位置要在完整网络的第一行

区块串接要与串并左边区块的最上段水平线接齐

1.6梯形图的化简

⏹串联区块与并联区块串联时,将区块放在前面可节省ANB指令

梯形图转译成指令:

⏹单一装置与区块并接,区块放上面可以省ORB指令

⏹梯形图(a)中,上面的区块比下面的区块短,可以把上下的区块调换达到同样的逻辑结果,因为图(a)是不合法的,因为有“信号回流”回路

图(a)

图(b)

相同垂直线的多重条件输出,没有输入装置及其运算的放在上面可以省略MPS、MPP

Y0

⏹信号回流的线路修正

在以下的两个范例,左边是我们想要的图形,但是根据我们的定义,左边的图是有误的,其中存在不合法的”信号回流”路径,如图所示。

并修正如右图,如此可完成使用者要的电路动作。

例一:

例二:

1.7常用基本程序设计范例

⏹起动、停止及自保

有些应用场合需要利用按钮的瞬时闭合及瞬时断开作为设备的启动及停止。

因此若要维持持续动作,则必须设计自保回路,自保回路有下列几种方式:

范例1:

停止优先的自保回路

当启动常开接点X1=On,停止常闭接点X2=Off时,Y1=On,此时将X2=On,则线圈Y1停止受电,所以称为停止优先。

范例2:

启动优先的自保回路

启动活常开接点X1=On,停止常闭接点X2=Off时,Y1=On,线圈Y1将受电且自保,此时将X2=On,线圈Y1仍因自保接点而持续受电,所以称为启动优先。

范例3:

置位(SET)、复位(RST)指令的自保回路

右图是利用RS

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1