SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx

上传人:b****6 文档编号:17735650 上传时间:2022-12-09 格式:DOCX 页数:31 大小:27.37KB
下载 相关 举报
SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx_第1页
第1页 / 共31页
SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx_第2页
第2页 / 共31页
SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx_第3页
第3页 / 共31页
SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx_第4页
第4页 / 共31页
SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx

《SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx(31页珍藏版)》请在冰豆网上搜索。

SPSS实验8二项Logistic回归分析报告Word文档下载推荐.docx

消费的二项Logistic分析结果

(二)(强制进入策略)

Block0:

BeginningBlock

ClassificationTable

a,b

Predicted

是否购买

Percentage

Observed

不购买

购买

Correct

Step0是否购买

269

100.0

162

.0

OverallPercentage

62.4

a.Constantisincludedinthemodel.

b.Thecutvalueis.500

上表显示了Logistic分析初始阶段(第零步)方程中只有常数项时的错判矩阵。

可以看到:

269人中实际没购买且模型预测正确,正确率为

100%;

162人中实际购买了但模型均预测错误,正确率为0%。

模型总的预测正确率为62.4%。

消费的二项Logistic分析结果(三)(强制进入策略)

VariablesintheEquation

B

S.E.

Wald

df

Sig.

Exp(B)

Step0

Constant

-.507

.099

26.002

1

.602

上表显示了方程中只有常数项时的回归系数方面的指标,各数据项的含义依次为回归系数,回归系数标准误差,Wald检验统计量的观测值,自由

度,Wald检验统计量的概率p值,发生比。

由于此时模型中未包含任何解释变量,因此该表没有实际意义。

消费的二项Logistic分析结果(四)(强制进入策略)

VariablesnotintheEquation

Score

Variables

age

1.268

.260

gender

(1)

4.667

.031

income

10.640

2

.005

income

(1)

2.935

.087

income

(2)

.001

OverallStatistics

18.273

4

上表显示了待进入方程的各个变量的情况,各数据项的含义依次为Score检验统计量的观测值,自由度和概率

进入方程,则Score检验统计量的观测值为1.268,概率p值为0.26。

如果显著性水平a为0.05,由于Age的概率

进入方程的。

但在这里,由于解释变量的筛选策略为Enter,所以这些变量也被强行进入方程。

p值。

可以看到,如果下一步Agep值大于显著性水平a,所以是不能

消费的二项Logistic分析结果(五)(强制进入策略)

Block1:

Method=Enter

OmnibusTestsofModelCoefficients

Chi-square

Step1

Step

18.441

Block

Model

上表显示了Logistic分析第一步时回归方程显著性检验的总体情况,各数据项的含义依次为似然比卡方的观测值,自由度和概率p值。

可以看

到,在本步所选变量均进入方程(Method=Enter)。

与前一步相比,似然比卡方检验的观测值18.441,概率p值为0.001。

如果显著性水平a为0.05,

由于概率p值小于显著性水平a,应拒绝零假设,认为所有回归系数不同时为0,解释变量的全体与LogitP之间的线性关系显著,采用该模型是合理

的。

在这里分别输出了三行似然比卡方值。

其中,Step行是本步与前一步相比的似然卡方比;

Block行是本块(Block)与前一块相比的似然卡方比;

Model行是本模型与前一模型相比的似然卡方比。

在本例中,由于没有设置解释变量块,且解释变量是一次性强制进入模型,所以三行结果都相同。

消费的二项Logistic分析结果(六)(强制进入策略)

ModelSummary

Cox&

SnellRNagelkerkeR

Step-2LoglikelihoodSquareSquare

1552.208a.042.057

a.Estimationterminatedatiterationnumber4because

parameterestimateschangedbylessthan.001.

上表显示了当前模型拟合优度方面的指标,各数据项的含义依次为-2倍的对数似然函数值,Cox&

SnellR^2。

-2倍的对数似然函数值越小则模型的

拟合优度越高。

这里该值较大,所以模型的拟合优度并不理想。

从NagelkerkeR^2也可以看到其值接近零,因此拟合优度比较低。

消费的二项Logistic分析结果(七)(强制进入策略)

a

ObservedPredicted

Step1是否购买

236

33

87.7

131

31

19.1

61.9

a.Thecutvalueis.500

上表显示了当前所得模型的错判矩阵。

可以看到,脚注中的TheCutvalueis.500意味着:

如果预测概率值大于0.5,则认为被解释变量的分类预

测值为1,如果小于0.5,则认为被解释变量的分类预测值为0.;

在实际没购买的269人中,模型正确识别了236人,识别错误了131人,正确率为

19.1%。

模型总的预测正确率为61.9%。

与前一步相比,对未购买的预测准确度下降了,对购买的预测准确度上升了,但总体预测精度仍下降了。

因此

模型预测效果并不十分理想。

消费的二项Logistic分析结果(八)(强制进入策略)

Step1a

.025

.018

1.974

.160

1.026

.511

.209

5.954

.015

1.667

12.305

.002

.101

.263

.146

.703

1.106

.787

.253

9.676

2.196

-2.112

.754

7.843

.121

a.Variable(s)enteredonstep1:

age,gender,income.

上表显示了当前所得模型中各个回归系数方面的指标。

可以看出,如果显著性水平a为0.05,由于Age的Wald检验概率p值大于显著性水平a,

不应拒绝零假设,认为该回归系数与0无显著差异,它与LogitP的线性关系是不显著的,不应保留在方程中。

由于方程中包含了不显著的解释变量,因

此该模型是不可用的,应重新建模。

下面是对模型做进一步分析,解释变量的筛选采用基于极大似然估计的逐步筛选策略(Forward:

LR),分析的具体操作以及结果如下:

(二)基本操作:

(2)选择是否购买作为被解释变量到Dependent框中,选其余各变量为解释变量到Covariates框中,采用Forward:

LR方法,在Option框中对模型做

近一步分析,结果如下:

消费的二项Logistic分析结果

(一)(逐步筛选策略)

Method=ForwardStepwise(LikelihoodRatio)

10.543

Step2

5.917

16.459

3

消费的二项Logistic

分析结果

(二)(逐步筛选策略)

ModelifTermRemoved

ModelLog

Changein-2

Sig.ofthe

Variable

Likelihood

LogLikelihood

Change

-285.325

gender

-280.053

-282.976

11.761

.003

上面第一个表显示了变量逐步筛选过程中对数似然比卡方检验的结果,用于回归方程的显著性检验。

这里略去了第零步分析的结果。

结果上面的

两个表共同分析。

在Step1中,模型中包含常数项和INCOME。

如果此时剔除INCOME将使-2LL减少10.543,即10.543是INCOME进入模型引起的,

-285.325即为零模型的对数似然比;

在Step2中,模型中包含常数项,INCOME,GENDER。

此时剔除GENDER,即-2LL将减少5.917,即5.917是在

Step1基础上GENDER所引起的,-280.053即为Step1模型的对数似然比,此时-2*285.325+2*280.053=10.543,即INCOME引起的。

其他同理。

可以

看到,如果显著性水平a为0.05,由于各步的概率p值均小于显著性水平a,因此此时模型中的解释变量全体与LogitP的线性关系是显著,模型合理。

消费的二项Logistic分析结果(三)(逐步筛选策略)

95.0%C.I.forEXP(B)

Lower

Upper

10.512

.006

.259

.982

1.006

.606

1.670

.672

.247

7.424

1.958

1.208

3.174

-.762

.187

16.634

.467

Step2b

.504

5.824

.016

1.656

1.099

2.493

11.669

.096

.134

.714

1.101

.658

1.843

.761

.251

9.147

2.139

1.307

3.502

-1.113

.240

21.432

.329

income.

b.Variable(s)enteredonstep2:

gender.

上表显示了解释变量筛选的过程和各解释变量的回归系数检验结果。

可以看到,最终的模型(第二步)中包含了性别和收入变量,各自回归系数

显著性检验的Wald观测值对应的概率p值都小于显著性水平a,因此均拒绝零假设,意味它们与LogitP的线性关系是显著,应保留在方程中。

表中的

第七,第八列分别是发生比的95%的置信区间。

最终年龄变量没有引入方程,因为如果引入则相应的Score检验的概率p值大于显著性水平a,不应拒绝零假设,它与LogitP的线性关系不显著,

不应进入方程。

具体结果如下:

消费的二项Logistic分析结果(四)(逐步筛选策略)

1.848

.174

5.865

7.824

.020

1.984

.159

消费的二项Logistic分析结果(五)(逐步筛选策略)

SnellR

NagelkerkeR

-2Loglikelihood

Square

560.107a

.024

.033

554.190b

.037

.051

a.Estimationterminatedatiterationnumber3because

b.Estimationterminatedatiterationnumber4because

上表显示了模型拟合优度方面的测度指标。

最终模型的-2倍的对数似然函数值为554.190,仍然较高,说明模型的拟合优度不甚理想。

同时,

NagelkerkeR^2距1较远,也说明了模型的拟合优度不高。

消费的二项Logistic分析结果(六)(逐步筛选策略)

HosmerandLemeshowTest

8.943

.063

消费的二项Logistic分析结果(七)(逐步筛选策略)

ContingencyTableforHosmerandLemeshowTest

是否购买=不购买是否购买=购买

Expected

Total

90

90.000

42

42.000

98

98.000

46

46.000

81

81.000

74

74.000

35

32.363

8

10.637

43

58

53.602

15

19.398

73

55

57.637

34

31.363

89

40

44.398

26.602

71

5

37

44.035

38

30.965

75

6

44

36.965

36

43.035

80

上面是Hosmer-Lemeshow检验的结果。

最终模型中,Hosmer-Lemeshow统计量的观测值为8.943,概率p值为0.063,大于显著性水平a,因

此不应拒绝零假设,认为该组的划分与被解释变量的取值不相关,说明模型的拟合优度较低。

它与NagelkerkeR^2分析的结果是一致的。

消费的二项Logistic分析结果(八)(逐步筛选策略)

225

83.6

126

22.2

60.6

Stepnumber:

2

ObservedGroupsandPredictedProbabilities

160┼┼

││

F││

R120┼┼

E

Q

U

E80

N

11

C

01

Y

00

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1