微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx

上传人:b****6 文档编号:17719142 上传时间:2022-12-08 格式:DOCX 页数:22 大小:652.17KB
下载 相关 举报
微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx_第1页
第1页 / 共22页
微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx_第2页
第2页 / 共22页
微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx_第3页
第3页 / 共22页
微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx_第4页
第4页 / 共22页
微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx

《微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx》由会员分享,可在线阅读,更多相关《微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx(22页珍藏版)》请在冰豆网上搜索。

微型半导体流量传感器的开发外文文献翻译中英文翻译外文翻译Word文档格式.docx

F.Kohl,R.Fasching,F.Keplinger,R.Chabicovsky,A.Jachimowicz,G.Urban

Abstract

Miniaturizedflowsensorsbasedonthinfilmgermaniumthermistorsweredevelopedofferinghighflowsensitivitiesandshortresponsetimes.Thethermistorsareplacedonasiliconnitridediaphragmcarriedbyasiliconframe.Usingthe3controlledovertemperatureschemethemeasurableairflowraterangesfrom0.6to150000cm/h.Inthispaperwemainlyreportonthedynamicpropertiesofthesensor.Theresponseofthesensortostepchangesoftheheaterpowerwillbecomparedwithitsresponsetoshockwavesforboththeconstantpowermodeandtheconstantovertemperatureoperatingmode.Asimplearrangementforthegenerationofacousticshockwaveswillbepresented.

1.Introduction

Thereisagrowingdemandofmicro-flowsensorsforindustrial,automotive,domesticandmedicalapplications.Themeasuringprinciplecanbebasedonthermistors,thermopiles,pyroelectricelements,pn-junctions,resonatingmicrobridges,Prandtltubesandseveralothereffects[1–10].Micromachiningisadoptedtoachievehighsensitivity,quickresponseandlowpowerconsumption。

Oneimportantapplicationofflowsensorsisthemeasuringoftheinstantaneousairintakeofcombustionengines.Knowledgeofthiscombustionprocessparameterisessentialifonetriestominimizeboththeengine’sfuelconsumptionandthepollutionoftheenvironment.Forthedevelopmentofsuchenginesawidevelocitymeasuringrangeandhighresolutionmonitoringofthetimecourseoftheairvelocityisdesirable.

Theelectrocalorimetricflowsensorpresentedhereisbasedonaheattransferprincipleinwhichaheatedbodyiscooledbyapassingflowandthelocalrateofcoolingdependsontheflowvelocity[11].Thesensorisbasedontheso-called‘hotfilm’flowmeasurementmethod.AverythinsiliconnitridediaphragmsupportedbyamicromachinedsiliconframeismountedflushwiththewallofaflowchannelasshowninFig.1.Athinfilmheatingresistorisembeddedinthediaphragmtoobtainasymmetricsurfacetemperaturedistribution.Twodiaphragmthermistorsmeasurethetemperatureinapositionupstreamanddownstreamoftheheater.

Fig.1.Schematiccross-sectionofatypicalhotfilmflowsensorandtemperaturedistributionalongthediaphragm.H,heater;

DT1,DT2,diaphragmtemperaturesensors.

Atangentialflowdisturbsthethermalsymmetry.Heatiscarriedfromtheheateddiaphragmwhentheinitiallycoldfluidpassesovertheheatedsurface.Sincethefluidtemperatureincreasesinthedirectionofflowthecoolingeffectisreducedinthedown-streamarea.Inthisareathefluidtemperaturemaybecomeevenhigherthanthesurfacetemperatureresultinginalocalheatingofthediaphragm.Thusatemperaturedifferencebetweenthecooledupstreamareaandthelesscooled(orheated)downstreamareaoccurs.Thistemperaturedifferencecanbeconvertedintoanoutputvoltage,whichisusedasameasureforthefluidvelocityormassflow.Theflowrangeandsensitivityisstronglyinfluencedbythedistancebetweentheheaterandthetemperaturesensors[2,12].Withasymmetricarrangementstheshapeoftheoutputcharacteristic(temperaturedifferenceversusflowrate)canbesignificantlychanged[10,13]

Wehavedevelopedasymmetricmicromachinedsemiconductorflowsensorcapableofmeasuringbidirectionalflow.Extensivecharacterizationofthesensorwasdoneexhibitingexcellentflowsensitivityandanextremelywidemeasuringrange.Furthermore,athoroughinvestigationofthedynamicbehaviourofthesensorwascarriedout.

2.Sensorconstructionandtechnology

A(100)siliconwaferhasbeenusedforthefabricationofthesensor.Thechipsizeis234mmandthethicknessis0.3mm.Twothinfilmthermistorsareplacedsymmetricallytoacentralheateronan800-nmthicksiliconnitridediaphragm(Fig.2).Additionalthermistorsarearrangedattherimofthesiliconchip.Theseso-calledsubstratethermistorsareusedtomeasurethefluidtemperature,whichisclosetothesubstratetemperature.

Fig.2.Schematiccrossofthesensor.Thesizeofthediaphragmis0.5×

1.1mm

Allthermistorsarefabricatedbyevaporationofamorphousgermaniumontocomb-shapedelectrodes[fig.3]

Fig.3

Onemajoradvantageofthistypeofhightemperature-resolutionthermistorsisthatreliableflowsensingoperationispossiblewithonlyasmalltemperaturedifferencebetweentheheaterandthefluid.Thepresentedsensoroperateswithheaterovertemperatureslessthan25K.Fullresolutionisalreadyobtainedwithaheaterovertemperatureof10K.However,theincreaseofthefluidtemperaturecausedbytheheaterismuchsmallerthantheseovertemperatures.Sothesensorisespeciallyapplicableinsuchcaseswheretheheatermustnotcauseasignificantincreaseofthefluidtemperature.Themaximumelectricalpowerratingoftheheateris40mWifthefluidisair.However,thetypicaloperatingpowerisabout4mW,whichcorrespondstoaheatervoltageof3V.Bothplatinumandnichromehavebeenappliedastheheatermaterial.

Furthermore,narrowpairtolerancesofthethermistorcharacteristicsareimportanttoachievehighresolutionintemperaturedifferencemeasurements.Nonethelessahighprecisionofthesensorgeometryisnecessaryforanoffsetfreebi-directionalsensorcharacteristic.

Boththeheaterandthethermistorsexhibitsmalldimensionsinthenominalflowdirectionandlargeextentsperpendiculartothisdirection.Theseextremeaspectratiosofheaterandthermistorareawerechosenforfourreasons:

(a)toachieveapronounceddirectionalcharacteristicfortheflowsensitivity,(b)toavoiddelayofresponseduetothermalpropagationtimes,(c)toachievesuitableresistancevaluesofthethermistorandtheheater,and(d)toensureauniformlocaltemperaturethroughouttheamorphousgermaniumareaunderstaticanddynamicheattransportconditions.

Furthermore,duetothehighaspectratioaonedimensionalmodelingofheatconductioninthediaphragmandtwo-dimensionalmodelsforheatconvectionaresufficientforbasicconsiderations.Thethinfilmstructureswereproducedonawafer,whichhasfirstbeencoveredbyasiliconnitridelayer.ThenalowstresssiliconnitrideprotectivefilmisdepositednearlyatroomtemperatureusingaPECVDprocess.Thelowdepositiontemperaturepreventsthegermaniumfilmfromrecrystallization.Bothsiliconnitridelayersformthediaphragmofthemicromachinedsensor.SiliconnitrideexhibitsalowthermalconductivityresultinginhighflowsensitivityThethermalconductivityofsiliconnitrideisabout2.3W/m?

Kascomparedto150W/m?

Kforsilicon.Afurtheradvantageofthesiliconnitridediaphragmisitssmallthicknessresultinginasmallthermalconduction.The800-nmthickdiaphragmusedinoursensorhasbeenprovedtobeverystableinatangentialflow(Fig.2).

Amorphousgermaniumexhibitshighvaluesofboththeresistivityanditstemperaturecoefficient.Thetemperaturecoefficientofresistance(TCR)isapproximately22%/Kandtheresistivityisabout5Vmatroomtemperature.Measurementsofthetemperaturedependenceofthethermistorresistancebetween77and330Krevealed,thattheelectricalconductivityofamorphousgermaniumisgovernedbyavariablerangehoppingprocess[14].AtroomtemperaturetheTCRvariesonlyslightlywithtemperature,whicheasesappreciabletheburdenforcompensatingofchangesoftheambienttemperature.AlayoutasshowninFig.3anda250-nmthickgermaniumfilmresultinaresistanceof70kVat208C.Ithasbeenprovedthatthelong-termstabilityofthischaracteristicisbetterthan0.5%peryear.Anoiseequivalenttemperaturedifferenceof10mKforabandwidthof10Hzisachievedwiththisthermistortechnology[10].Forcomparison,Johnsonnoiseonlywouldlimittheresolutionto4.75mK.

3Experimental

3.1.Sensormounting

TostudythesensorpropertiesinsituationsthataretypicalforvariousapplicationsthechipwasattachedtodifferentcarrierconstructionsForfreefieldcalibrationinawindtunnelandotherexperimentalmeasurementsthesensorchipisgluedtoa0.15-mmthickprintedcircuitboard(PCB)flushfittedwiththeboardsurface(Fig.4).ForthispurposetheflexiblePCBwasformedusinganembossingdie.ThedimensionofthisPCBinthedirectionofflowis60mmandthesensorwasplacedmidways.ThegroundplaneofthePCBshieldsthesignalleadsagainstinterferences

Fig.4.Schematiccross-sectionalviewofthesensormounted

onaflexibleprintedcircuitboard

Forflowratemeasurementsthesiliconchiphastobeincorporatedinthewallofaminiaturizedflowchannel.ThiswasachievedusingarigidPCBof0.5mmthicknesswithamilleddeepeningwhichaccommodatesthesensorchipflushwiththesurfaceofthePCB.ThePCBformsonesidewallofarectangularflowchannel.

ThesamePCBmeasuring15mmalongthedirectionofflowwasusedforshockwaveexperiments.TosuppressturbulencesinthisapplicationtheedgesofthePCBwereformedtoshowwedgeshape.ThePCBwasthenplacedinasymmetryplaneofthecylindricalflowchannel.

3.2.Shockwavegenerator

ToinvestigatetheresponsetostepchangesofflowsimpleshockwavegeneratordepictedschematicallyinFig.5wasdeveloped.AcommercialballooncontainedinaPVC-cylinderof70mmdiameterandapproximately250mmlengthisblownuptoitsburstpressurewithnitrogengas.Anorificeoftypical2-mmdiameterlimitstheacoustic

Fig.5.Sketchofthearrangementusedforthegenerationofshockwaves

andtherelatedsensorarrangement

flowoftheresultingshockwave.Thesensorisplacedatasymm

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 艺术创意

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1