新课标北师大版六年级下册数学全册教案Word文档格式.docx
《新课标北师大版六年级下册数学全册教案Word文档格式.docx》由会员分享,可在线阅读,更多相关《新课标北师大版六年级下册数学全册教案Word文档格式.docx(35页珍藏版)》请在冰豆网上搜索。
这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
课时安排:
12课时
教学内容:
面的旋转
教学目标:
1.通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。
2.通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
3.通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。
教学重点:
1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。
2、通过观察,初步了解圆柱和圆锥的组成及其特点。
教学难点:
通过观察,初步了解圆柱和圆锥的组成及其特点。
教学用具:
各种面、圆柱和圆锥模型
教学过程:
一.活动一
如图:
将自行车后轮架支起,在后车车条上系上彩带。
转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?
学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:
点动成线
二.活动二
观察下面各图,你发现了什么?
学生发现:
风筝的每一个节连起来看,形成了一个长方形;
雨刷器扫过后形成一个半圆形
学生体验:
线动成面
三.活动三
用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。
1、学生实际动手操作,然后根据想象的图形连线
1——1(圆柱)2——3(球)3——4(圆锥)4——2(圆台)
2、介绍:
圆柱、圆锥、球的名称。
并请学生根据自己的观察介绍一下这几个立体图形的特点。
指名请学生说。
小结:
我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。
四.找一找
请你找一找我们学过的立体图形
五.说一说
圆柱与圆锥有什么特点?
和小组的同学互相说一说
圆柱:
有两个面是大小相同的圆,有另一个面是曲面。
圆锥:
它是由一个圆和一个曲面组成的。
六.认一认
圆柱的上下两个面叫做底面,它们是完全相同的两个圆。
圆柱有一个曲面,叫做侧面。
圆柱两个底面之间的距离叫做高。
圆锥的底面是一个圆。
圆锥的侧面是一个曲面。
从圆锥顶点到底面圆心的距离是圆锥的高。
(教师画出平面图进行讲解。
并在图上标出各部分的名称。
)
七.练一练
1.找一找,下图中哪些部分的形状是圆柱或者圆锥?
再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。
2.下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。
3.想一想,连一连
4.应用题
八.板书
九.随堂反思
圆柱的表面积
第一课时
1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系
2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
使学生认识圆柱侧面展开图的多样性。
学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
课件、圆柱体的瓶子、剪子
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
想一想工人叔叔做这个茶叶罐是怎样下料的?
(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?
(说说自己的猜想)
二、自主探究,发现问题。
研究圆柱侧面积
1、独立操作:
利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2、观察对比:
观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:
能用已有的知识计算它的面积吗?
4、小组汇报。
(选出一个学生已经展开的图形贴到黑板上)
重点感受:
圆柱体侧面如果沿着高展开是一个长方形。
(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?
(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即
长×
宽
=底面周长×
高,所以,
圆柱的侧面积=底面周长×
高
S侧
==
C
×
h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:
S侧=2∏r×
h
如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。
此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
得出结论:
圆柱的表面积 = 圆柱的侧面积+底面积×
2
3、动画:
圆柱体表面展开过程
三、实际应用
1、解决书上的例题
2、填空
圆柱的侧面沿着高展开可能是(
)形,也可能是(
)形。
第二种情况是因为(
)
3、要求一个圆柱的表面积,一般需要知道哪些条件(
4、教材第六页试一试。
四、板书
圆柱体的表面积
圆柱的侧面积 = 底面周长×
高 → S侧=ch
↓ ↑ ↑
长方形 面积 = 长 ×
宽
圆柱的表面积 = 圆柱的侧面积+底面积×
五、随堂反思:
第二课时
1、进一步理解圆柱体侧面积和表面积的含义。
2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
圆柱表面积的实际应用。
教学过程
:
一、基本练习
说说计算方法
二、实际应用
求压路的面积是求什么?
说自己的想法,独立解答。
三、实践活动
四、课后反思
第三课时
一、
实际应用
1、
2、
3、
二、随堂反思
圆柱的体积
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;
会运用公式计算圆柱的体积。
圆柱体体积的计算
圆柱体体积公式的推导
圆柱体学具、课件
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米;
(2)d=4分米;
(3)C=6.28米。
要求说出解题思路。
2.想一想:
学习计算圆的面积时,是怎样得出圆的面积计算公式的?
指出:
把一个圆等分成若干等份,可以拼成一个近似的长方形。
这个长方形的面积就是圆的面积。
3.提问:
什么叫体积?
常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?
(板书:
长方体的体积=底面积×
高)
二、探索新知
1.根据学过的体积概念,说说什么是圆柱的体积。
(板书课题)
2.怎样计算圆柱的体积呢?
我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。
(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。
(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。
你能想出怎样切、拼转化吗?
请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。
教师演示圆柱体积公式推导演示教具:
把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。
可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?
为什么?
让学生再讨论:
圆柱体通过切拼,圆柱体转化成近似的长方体。
这个长方体的底面积与圆柱体的底面积
相等,这个长方体的高与圆柱体的高相等。
因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:
圆柱的体积=底面积×
高)用字母表示:
V=Sh)
(5)小结。
圆柱的体积是怎样推导出来的?
计算圆柱的体积必须知道哪些条件?
4.教学算一算
审题。
提问:
你能独立完成这题吗?
指名一同学板演,其余学生做在练习本上。
集体订正:
列式依据是什么?
应注意哪些问题?
最后结果用体积单位)
教学“试一试”
求圆柱的体积,必须知道底面积和高。
如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?
如果知道d呢?
知道C呢?
知道r、d、C,都要先求出底面积再求体积。
三、巩固练习
练习册练习
四、课堂小结
这节课学习了什么内容?
圆柱的体积怎样计算,这个公式是怎样得到的?
这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:
圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
五、板书:
六、随堂反思:
1.进一步理解和掌握圆柱的体积计算公式,并能应用到实际解决问题中。
2.
培养学生初步的空间观念和思维能力;
让学生认识“转化”的思考方法。
理解和掌握圆柱的体积计算公式。
教学难点
圆柱体积计算公式的推导。
说解题思路
说说你的解题思路
这道题的注意的地方:
单位的统一
说说哪个体积大?
为什么?
上升的2厘米是什么
分别说说表面积和体积的计算方法。
圆锥的体积
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
3、培养学生初步的空间观念和思维能力;
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:
同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?
这节课我们就来研究这个问题.(板书:
圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的
.
板书:
5、推导圆锥的体积公式:
用字母表示圆锥的体积公式.板书:
6、思考:
要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的底面积是10,高是9,体积是( )
(二)算一算
学生独立计算,集体订正.
说说解题方法
三、全课小结
通过本节的学习,你学到了什么知识?
(从两个方面谈:
圆锥体体积公式的推导方法和公式的应用)
1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
3、进一步熟悉圆锥的体积计算
圆锥的体积计算
圆锥体积计算公式
相邻两个面积单位之间的进率是多少?
相邻两个体积单位之间的进率是多少?
占地面积是求得什么?
第二单元正比例和反比例
变化的量正比例画一画反比例观察与探究图形的缩放比例尺
1、结合具体情境,体会生活中存在着大量互相依赖的变量;
在具体情境中,尝试用自己的语言描述两个变量之间的关系。
2、结合丰富的实例,认识正比例或者反比例;
能根据正比例和反比例的意义,判断两个相关联的量是不是成正比例或反比例
3、能找出生活中成正比例和反比例的实例,会利用正、反比例的有关指示解决一些简单的生活问题。
4、通过观察、操作与交流,体会比例持产生的必要性和实际意义,了解比例尺的含义。
5、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
单元教材分析这部分内容是在学生已经学过比的意义、比的化简与比的应用的基础上学习的。
本单元教材编写力图体现以下主要特点。
1.提供具体情境,使学生体会生活中存在大量互相依赖的量我们生活在一个变化的世界中,从数学的角度研究变量和变量之间的关系,将有助于人们更好地认识现实世界、预测未来。
同时,研究现实世界中的变化规律,也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。
我们知道,函数(函数可以直观地理解为:
在一个变化过程中有两个变量x,y,对于x的每一个变化的值,y都有唯一确定的值与之对应,y就叫做x的函数)是研究现实世界变量之间关系的一个重要模型,对它的学习一直是中学阶段数学学习的一个重要内容。
而国际数学课程发展的趋势表明,对变量之间关系的探索、描述应从小学阶段非正式地开始,早期对函数的丰富经历是十分重要的。
其实,以前学习的探索数、形的变化规律,字母表示数等,已经为学生积累了研究变量之间关系的经验,而本章的正比例、反比例本身就是两个重要的函数。
函数是刻画变量之间相互关系的重要模型,体会函数思想需要丰富的情境,学生将在这些情境中,感受到生活中存在着大量变量,有的变量之间是存在一定关系的,一个变量随另一个变量的变化而变化。
因此,在正式学习正比例、反比例之前,教材设计了三个具体情境,通过学生感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致地描述。
多种研究表明,为了有助于学生对函数思想的理解,应使他们对函数的多种表示———数值表示(表格)、图像表示、解析表示(关系式),有丰富的经历。
因此,教材在呈现具体情境中变量之间的关系时,分别运用了表格表示、图像表示、关系式表示的方法。
在后面正比例、反比例的学习中,也十分重视三种方式的结合。
2.提供丰富情境,引导学生经历从具体情境中抽象出正、反比例的过程正比例关系、反比例关系是数学中比较重要的数量关系,同时,学生理解正比例、反比例的意义往往比较困难。
为此,教材密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成正比例的量、成反比例的量以及正比例、反比例在生活中的广泛存在。
这些系列情境也为学生理解“正比例”“反比例”的意义提供了丰富的直观背景和具体案例,例如教材从不同的角度(实际生活、图形)提供了有利于学生探索并理解正比例意义的情境,这些情境中既包括“时间与路程”“购买苹果应付的钱数与质量”等生活情境,也包括正方形周长与边长、面积与边长等数学情境,情境中有正例也有反例,以引导学生经历从具体情境中抽象概括出正比例的过程。
3.注重引导学生利用“正、反比例”的意义解决实际问题,关注知识之间的联系正、反比例在生活中有着广泛的应用,教材不仅仅是在引入时为学生提供了丰富的现实情境,还鼓励学生寻找生活情境中成“正、反比例”的量。
如,设计“找一找生活中成正、反比例的例子,并与同伴交流”的题目,使学生认识到正、反比例的知识与日常生活的密切联系。
同时,教材还特别注重知识之间的联系,呈现了大量学生以前学过的量与量之间的关系,鼓励学生判断它们之间的关系。
如,底一定时,平行四边形的面积与高;
圆的周长与直径。
4.在画图或解决实际问题等的活动中,体验比例尺的应用对于比例尺的知识,学生并不陌生,生活经验比较丰富,如地图上的比例尺等。
尽管如此,比例尺的应用对于学生来说还是比较抽象的,教材结合具体的活动和实例,贴近学生的生活经验,让学生感受到比例尺的广泛应用。
如,在探究活动中,通过在方格纸上画小猫图,讨论哪只小猫长得更像乐乐,让学生初步体会比例尺的应用。
再如,在实践活动中,通过画自己卧室的平面图,设计巨人的教室,进一步体会比例尺在生活中的应用。
同时,通过“你知道吗”栏目中的知识,了解比例尺的另一种形式,拓宽学生的视野。
15课时
变化的量
1.结合具体目标,体会生活中存在着大量互相依存的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
结合具体目标,体会生活中存在着大量互相依存的变量。
课件
活动一:
观察并回答。
1、下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?
观察后请回答。
2、
上表中哪些量在发生变化?
3、
说一说小明10周岁前的体重是如何随年龄增长而变化的?
小明的体重随年龄的增长而变化。
2—6岁和6---10岁是体重的增长高峰。
说明这两个阶段是孩子成长的重要阶段。
4、体重一直会随年龄的增长而变化吗?
这说明了什么?
说明:
体重和年龄是一组相关联的量。
但体重的增长是随着人的生长规律而确定的。
6、教育学生要合理饮食,适当控制自己的体重。
活动二:
骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1、