浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx

上传人:b****5 文档编号:17455226 上传时间:2022-12-01 格式:DOCX 页数:11 大小:28.60KB
下载 相关 举报
浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx_第1页
第1页 / 共11页
浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx_第2页
第2页 / 共11页
浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx_第3页
第3页 / 共11页
浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx_第4页
第4页 / 共11页
浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx

《浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx(11页珍藏版)》请在冰豆网上搜索。

浅谈桥梁产生裂缝的原因毕业论文Word文档下载推荐.docx

(一)直接应力裂缝是指外荷载引起的直接应力产生的裂缝。

裂缝产生的原因有:

1、设计计算阶段,结构计算时不计算或部分漏算;

计算模型不合理;

结构受力假设与实际受力不符;

荷载少算或漏算;

内力与配筋计算错误;

结构安全系数不够。

结构设计时不考虑施工的可能性;

设计断面不足;

钢筋设置偏少或布置错误;

结构刚度不足;

构造处理不当;

设计图纸交代不清等。

2、施工阶段,不加限制地堆放施工机具、材料;

不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;

不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;

不对结构做机器振动下的疲劳强度验算等。

3、使用阶段,超出设计载荷的重型车辆过桥;

受车辆、船舶的接触、撞击;

发生大风、大雪、地震、爆炸等。

(二)次应力裂缝是指由外荷载引起的次生应力产生裂缝。

1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。

例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。

2、桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。

研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。

在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。

因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。

次应力裂缝多属张拉、劈裂、剪切性质。

次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。

例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。

在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。

荷载裂缝特征依荷载不同而异呈现不同的特点。

这类裂缝多出现在受拉区、受剪区或振动严重部位。

但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

根据结构不同受力方式,产生的裂缝特征如下:

1、中心受拉。

裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。

采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、中心受压。

沿构件出现平行于受力方向的短而密的平行裂缝。

3、受弯。

弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。

采用螺纹钢筋时,裂缝间可见较短的次裂缝。

当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、大偏心受压。

大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。

5、小偏心受压。

小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。

6、受剪。

当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°

方向的斜裂缝;

当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°

方向相互平行的斜裂缝。

7、受扭。

构件一侧腹部先出现多条约45°

方向斜裂缝,并向相邻面以螺旋方向展开。

8、受冲切。

沿柱头板内四侧发生约45°

方向斜面拉裂,形成冲切面。

9、局部受压。

在局部受压区出现与压力方向大致平行的多条短裂缝。

二、温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。

在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。

温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。

引起温度变化主要因素有:

1、年温差。

一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。

我国年温差一般以一月和七月月平均温度的作为变化幅度。

考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。

2、日照。

桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。

由于受到自身约束作用,导致局部拉应力较大,出现裂缝。

日照和下述骤然降温是导致结构温度裂缝的最常见原因。

3、骤然降温。

突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。

日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。

4、水化热。

出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。

施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。

5、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。

6、预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。

采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至

350℃,混凝土构件也容易开裂。

试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;

由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。

三、收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。

在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

塑性收缩。

发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。

塑性收缩所产生量级很大,可达1%左右。

在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。

在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。

为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩)。

混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。

因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。

混凝土硬化后收缩主要就是缩水收缩。

如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

自生收缩。

自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

炭化收缩。

大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。

炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。

炭化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

研究表明,影响混凝土收缩裂缝的主要因素有:

1、水泥品种、标号及用量。

矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。

另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。

例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

2、骨料品种。

骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;

而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。

另外骨料粒径大收缩小,含水量大收缩越大。

3、水灰比。

用水量越大,水灰比越高,混凝土收缩越大。

4、外掺剂。

外掺剂保水性越好,则混凝土收缩越小。

5、养护方法。

良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。

养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。

蒸汽养护方式比自然养护方式混凝土收缩要小。

6、外界环境。

大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。

7、振捣方式及时间。

机械振捣方式比手工捣固方式混凝土收缩性要小。

振捣时间应根据机械性能决定,一般以5~15s/次为宜。

时间太短,振捣不密实,形成混凝土强度不足或不均匀;

时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。

对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。

构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。

四、地基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。

基础不均匀沉降的主要原因有:

1、地质勘察精度不够、试验资料不准。

在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。

比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。

2、地基地质差异太大。

建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。

3、结构荷载差异太大。

在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。

4、结构基础类型差别大。

同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。

5、分期建造的基础。

在原有桥梁基础附近新建桥梁时,如分期修建的高速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。

6、地基冻胀。

在低于零度的条件下含水率较高的地基土因冰冻膨胀;

一旦温度回升,冻土融化,地基下沉。

因此地基的冰冻或融化均可造成不均匀沉降。

7、桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。

8、桥梁建成以后,原有地基条件变化。

大多数天然地基和人工地基浸水后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。

在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加,基础受荷加大。

有些桥梁基础埋置过浅,受洪水冲刷、淘挖,基础可能位移。

地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、砂石等,桥址范围土层可能受压缩再次变形。

因此,使用期间原有地基条件变化均可能造成不均匀沉降。

对于拱桥等产生水平推力的结构物,对地质情况掌握不够、设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。

五、钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。

由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);

施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

六、冻胀引起的裂缝

大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;

同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。

尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。

冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。

当混凝土中骨料空隙多、吸水性强;

骨料中含泥土等杂质过多;

混凝土水灰比偏大、振捣不密实;

养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。

冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。

七、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。

配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

1、水泥

(1)、选用水泥时,应注意其特性对混凝土结构强度、耐久性和实用条件是否有利于影响,水泥安定性不合格,水泥中游离的氧化钙含量超标。

氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。

(2)、选用水泥时,应以能使所配置的混凝土强度达到要求、收缩小、和易性好和节约水泥为原则。

(3)、水泥应符合现行国家标准,并附有制造厂的水泥品质试验报告等合格证明文件。

水泥进厂后,应按其品种、强度等级、证明文件以及出厂时间等情况分批进行检查验收。

对所用水泥应进行复查试验。

为快速鉴定水泥的现有强度,也可用促凝压蒸法进行复验。

(4)、袋装水泥在运输和储存时应防止受潮,堆垛高度不宜超过10袋。

不同强度等级、品种和出厂日期的水泥应分别堆放。

出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。

散装水泥的储存,应尽可能采用水泥罐或散装水泥仓库。

水泥如受潮或存放时间超过3个月,应重新取样检验,并按其复验结果使用。

(5)、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。

2、砂、石骨料

(一)、细集料

(1)、桥涵混凝土的细集料,应采用级配良好、质地坚硬、颗粒洁净、粒径小于5mm的河砂,河砂不易得到时,也可以用山砂或用硬质岩石加工的机制砂。

(2)、砂的分类,粗砂:

3.7~3.1、中砂:

3.0~2.3、细砂:

2.2~1.6。

(二)粗集料

(1)、桥涵混凝土的粗集料,应采用坚硬的卵石或碎石,应按产地、类别、加工方法和规格等不同情况,分批进行检验。

(2)、粗集料的颗粒级配,可采用连续级配或连续技配与单粒级配合使用。

在特殊情况下

,通过试验证明混凝土无离析现象时,也可采用单粒级。

(3)、粗集料最大粒径应按混凝土结构情况及施工方法选取,但最大粒径不得超过结构最小边尺寸的1/4和钢筋最小净距的3/4;

在两层或多层密布钢筋结构中,不得过钢筋最小净距的1/2,同时最大粒径不得超过100mm。

用混凝土泵运送混凝土时的粗集料最大粒径,除应符合上述规定外,对碎石不宜超过输送管径的1/3;

对于卵石不宜超过输送管径的1/2.5,同时应符合混凝土泵制造厂的规定。

(5)、施工前应对所用的碎石或卵石进行碱活性检验,在条件许可时尽量避免采用有碱活性反应的集料,或采取必要的措施。

(6)、集料在生产、采集、运输与储存过程中,严禁混入影响混凝土性能的有害物质。

集料应按品种规格分别摊放,不得混杂。

在装卸及储存时,应采取措施,使集料颗粒级配均匀,并保持洁净。

(三)拌合用水

拌制混凝土用的水应符合下列要求:

(1)、水中不应含有影响水泥正常凝结与硬化的有害杂质或油脂、糖类及游离酸等。

(2)、污水、pH值小于5的酸性水及含硫酸盐量及计超过0.27mg/cm

的水不得使用。

(3)、不得用海水拌制混凝土。

(4)、供饮用的水一般能满足上述条件,使用时可不经试验。

(四)混凝土中的外加剂

1)、根据混凝土的特殊要求,可在浇筑过程中掺入外加剂。

外加剂可采用一下几类:

2)、使用外加剂的要求

(1)应根据外加剂的特点,结合使用的目的,通过技术、经济比较来确定外加剂的适用品种。

如果使用一种以上的外加剂,必须经过配比设计,并按要求加入到混凝土拌合物中。

在外加剂的品种确定后,掺量应根据使用要求、施工条件、混凝土原材料的变化进行调整。

(2)所采用的外加剂必须是经过有关部门的检验并附有检验合格证明的产品,其质量应符合现行《混凝土外加剂》(GB8076)的规定,使用前应复验其效果,使用时用复合产品说明及规范中关于混凝土配合比、拌制、浇筑等各项规定以外外加剂标准中的有关规定。

(3)拌和水及外加剂

拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。

采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。

当工程需要获得较大的塌落度时,可在不改变混凝土的水灰比,不影响混凝土质量的情况下适当掺加外加剂。

八、施工工艺质量引起的裂缝

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。

裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:

1、混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

(1)、强度是混凝土最重要的力学性质。

这是因为任何混凝土结构物主要用以承受荷载或抵抗各种作用力的。

一般来说,混凝土的强度越高,其刚性、不透水性、抗风化性和某些侵蚀介质的能力愈强。

另一方面,其强度愈高,往往干缩也比较大,同时较脆易裂。

因此,通常用混凝土墙强度来评定和控制混凝土的质量以及评价各种因素(如原材料、配合比、制造方法和养护条件等)影响程度的指标。

2、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。

3、混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。

4、混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。

5、混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

6、用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

7、混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。

如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;

采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。

8、混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。

9、施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。

1

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教学研究 > 教学计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1