商业资料数控刀具材料及选用Word文档下载推荐.docx

上传人:b****3 文档编号:17232067 上传时间:2022-11-29 格式:DOCX 页数:11 大小:26.21KB
下载 相关 举报
商业资料数控刀具材料及选用Word文档下载推荐.docx_第1页
第1页 / 共11页
商业资料数控刀具材料及选用Word文档下载推荐.docx_第2页
第2页 / 共11页
商业资料数控刀具材料及选用Word文档下载推荐.docx_第3页
第3页 / 共11页
商业资料数控刀具材料及选用Word文档下载推荐.docx_第4页
第4页 / 共11页
商业资料数控刀具材料及选用Word文档下载推荐.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

商业资料数控刀具材料及选用Word文档下载推荐.docx

《商业资料数控刀具材料及选用Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《商业资料数控刀具材料及选用Word文档下载推荐.docx(11页珍藏版)》请在冰豆网上搜索。

商业资料数控刀具材料及选用Word文档下载推荐.docx

PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。

PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。

因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。

③CVD金刚石刀具:

自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。

CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。

CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。

⑵金刚石刀具的性能特点:

①极高的硬度和耐磨性:

天然金刚石是自然界已经发现的最硬的物质。

金刚石具有极高的耐磨性,加工高硬度材料时,金刚石刀具的寿命为硬质合金刀具的lO~100倍,甚至高达几百倍。

②具有很低的摩擦系数:

金刚石与一些有色金属之间的摩擦系数比其他刀具都低,摩擦系数低,加工时变形小,可减小切削力。

③切削刃非常锋利:

金刚石刀具的切削刃可以磨得非常锋利,天然单晶金刚石刀具可高达0.002~0.008μm,能进行超薄切削和超精密加工。

④具有很高的导热性能:

金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。

⑤具有较低的热膨胀系数:

金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的刀具尺寸的变化很小,这对尺寸精度要求很高的精密和超精密加工来说尤为重要。

⑶金刚石刀具的应用。

金刚石刀具多用于在高速下对有色金属及非金属材料进行精细切削及镗孔。

适合加工各种耐磨非金属,如玻璃钢粉末冶金毛坯,陶瓷材料等;

各种耐磨有色金属,如各种硅铝合金;

各种有色金属光整加工。

金刚石刀具的不足之处是热稳定性较差,切削温度超过700℃~800℃时,就会完全失去其硬度;

此外,它不适于切削黑色金属,因为金刚石(碳)在高温下容易与铁原子作用,使碳原子转化为石墨结构,刀具极易损坏。

2.立方氮化硼刀具材料的种类、性能和特点及刀具应用

用与金刚石制造方法相似的方法合成的第二种超硬材料—立方氮化硼(CBN),在硬度和热导率方面仅次于金刚石,热稳定性极好,在大气中加热至10000C也不发生氧化。

CBN对于黑色金属具有极为稳定的化学性能,可以广泛用于钢铁制品的加工。

⑴立方氮化硼刀具的种类

立方氮化硼(CBN)是自然界中不存在的物质,有单晶体和多晶体之分,即CBN单晶和聚晶立方氮化硼(Polycrystallinecubicbornnitride,简称PCBN)。

CBN是氮化硼(BN)的同素异构体之一,结构与金刚石相似。

PCBN(聚晶立方氮化硼)是在高温高压下将微细的CBN材料通过结合相(TiC、TiN、Al、Ti等)烧结在一起的多晶材料,是目前利用人工合成的硬度仅次于金刚石的刀具材料,它与金刚石统称为超硬刀具材料。

PCBN主要用于制作刀具或其他工具。

PCBN刀具可分为整体PCBN刀片和与硬质合金复合烧结的PCBN复合刀片。

PCBN复合刀片是在强度和韧性较好的硬质合金上烧结一层O.5~1.0mm厚的PCBN而成的,其性能兼有较好的韧性和较高的硬度及耐磨性,它解决了CBN刀片抗弯强度低和焊接困难等问题。

⑵立方氮化硼的主要性能、特点

立方氮化硼的硬度虽略次于金刚石,但却远远高于其他高硬度材料。

CBN的突出优点是热稳定性比金刚石高得多,可达1200℃以上(金刚石为700~800℃),另一个突出优点是化学惰性大,与铁元素在1200~1300℃下也不起化学反应。

立方氮化硼的主要性能特点如下。

①高的硬度和耐磨性:

CBN晶体结构与金刚石相似,具有与金刚石相近的硬度和强度。

PCBN特别适合于加工从前只能磨削的高硬度材料,能获得较好的工件表面质量。

②具有很高的热稳定性:

CBN的耐热性可达1400~1500℃,比金刚石的耐热性(700~800℃)几乎高l倍。

PCBN刀具可用比硬质合金刀具高3~5倍的速度高速切削高温合金和淬硬钢。

③优良的化学稳定性:

与铁系材料到1200—1300℃时也不起化学作用,不会像金刚石那样急剧磨损,这时它仍能保持硬质合金的硬度;

PCBN刀具适合于切削淬火钢零件和冷硬铸铁,可广泛应用于铸铁的高速切削。

④具有较好的热导性:

CBN的热导性虽然赶不上金刚石,但是在各类刀具材料中PCBN的热导性仅次于金刚石,大大高于高速钢和硬质合金

⑤具有较低的摩擦系数:

低的摩擦系数可导致切削时切削力减小,切削温度降低,加工表面质量提高。

⑶立方氮化硼刀具应用:

立方氮化硼适于用来精加工各种淬火钢、硬铸铁、高温合金、硬质合金、表面喷涂材料等难切削材料。

加工精度可达IT5(孔为IT6),表面粗糙度值可小至Ra1.25~0.20μm。

立方氮化硼刀具材料韧性和抗弯强度较差。

因此,立方氮化硼车刀不宜用于低速、冲击载荷大的粗加工;

同时不适合切削塑性大的材料(如铝合金、铜合金、镍基合金、塑性大的钢等),因为切削这些金属时会产生严重的积屑瘤,而使加工表面恶化。

3.陶瓷刀具材料的种类、性能和特点及刀具应用

陶瓷刀具具有硬度高、耐磨性能好、耐热性和化学稳定性优良等特点,且不易与金属产生粘接。

陶瓷刀具在数控加工中占有十分重要的地位,陶瓷刀具已成为高速切削及难加工材料加工的主要刀具之一。

陶瓷刀具广泛应用于高速切削、干切削、硬切削以及难加工材料的切削加工。

陶瓷刀具可以高效加工传统刀具根本不能加工的高硬材料,实现“以车代磨”;

陶瓷刀具的最佳切削速度可以比硬质合金刀具高2~lO倍,从而大大提高了切削加工生产效率;

陶瓷刀具材料使用的主要原料是地壳中最丰富的元素,因此,陶瓷刀具的推广应用对提高生产率、降低加工成本、节省战略性贵重金属具有十分重要的意义,也将极大促进切削技术的进步。

⑴陶瓷刀具材料的种类

陶瓷刀具材料种类一般可分为氧化铝基陶瓷、氮化硅基陶瓷、复合氮化硅一氧化铝基陶瓷三大类。

其中以氧化铝基和氮化硅基陶瓷刀具材料应用最为广泛。

氮化硅基陶瓷的性能更优越于氧化铝基陶瓷。

⑵陶瓷刀具的性能、特点

陶瓷刀具的性能特点如下:

①硬度高、耐磨性能好:

陶瓷刀具的硬度虽然不及PCD和PCBN高,但大大高于硬质合金和高速钢刀具,达到93-95HRA。

陶瓷刀具可以加工传统刀具难以加工的高硬材料,适合于高速切削和硬切削。

②耐高温、耐热性好:

陶瓷刀具在1200℃以上的高温下仍能进行切削。

陶瓷刀具具有很好的高温力学性能,A12O3陶瓷刀具的抗氧化性能特别好,切削刃即使处于赤热状态,也能连续使用。

因此,陶瓷刀具可以实现干切削,从而可省去切削液。

③化学稳定性好:

陶瓷刀具不易与金属产生粘接,且耐腐蚀、化学稳定性好,可减小刀具的粘接磨损。

④摩擦系数低:

陶瓷刀具与金属的亲合力小,摩擦系数低,可降低切削力和切削温度。

⑶陶瓷刀具有应用

陶瓷是主要用于高速精加工和半精加工的刀具材料之一。

陶瓷刀具适用于切削加工各种铸铁(灰铸铁、球墨铸铁、可锻铸铁、冷硬铸铁、高合金耐磨铸铁)和钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、淬火钢等),也可用来切削铜合金、石墨、工程塑料和复合材料。

陶瓷刀具材料性能上存在着抗弯强度低、冲击韧性差问题,不适于在低速、冲击负荷下切削。

4.涂层刀具材料的性能和特点及刀具的应用

对刀具进行涂层处理是提高刀具性能的重要途径之一。

涂层刀具的出现,使刀具切削性能有了重大突破。

涂层刀具是在韧性较好刀体上,涂覆一层或多层耐磨性好的难熔化合物,它将刀具基体与硬质涂层相结合,从而使刀具性能大大提高。

涂层刀具可以提高加工效率、提高加工精度、延长刀具使用寿命、降低加工成本。

新型数控机床所用切削刀具中有80%左右使用涂层刀具。

涂层刀具将是今后数控加工领域中最重要的刀具品种。

⑴涂层刀具的种类

根据涂层方法不同,涂层刀具可分为化学气相沉积(CVD)涂层刀具和物理气相沉积(PVD)涂层刀具。

涂层硬质合金刀具一般采用化学气相沉积法,沉积温度在1000℃左右。

涂层高速钢刀具一般采用物理气相沉积法,沉积温度在500℃左右;

根据涂层刀具基体材料的不同,涂层刀具可分为硬质合金涂层刀具、高速钢涂层刀具、以及在陶瓷和超硬材料(金刚石和立方氮化硼)上的涂层刀具等。

根据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和‘软”涂层刀具。

“硬”涂层刀具追求的主要目标是高的硬度和耐磨性,其主要优点是硬度高、耐磨性能好,典型的是TiC和TiN涂层。

“软”涂层刀具追求的目标是低摩擦系数,也称为自润滑刀具,它与工件材料的摩擦系数很低,只有0.1左右,可减小粘接,减轻摩擦,降低切削力和切削温度。

最近开发了纳米涂层(Nanoeoating)刀具。

这种涂层刀具可采用多种涂层材料的不同组合(如金属/金属、金属/陶瓷、陶瓷/陶瓷等),以满足不同的功能和性能要求。

设计合理的纳米涂层可使刀具材料具有优异的减摩抗磨功能和自润滑性能,适合于高速干切削。

⑵涂层刀具的特点

涂层刀具的性能特点如下:

①力学和切削性能好:

涂层刀具将基体材料和涂层材料的优良性能结合起来,既保持了基体良好的韧性和较高的强度,又具有涂层的高硬度、高耐磨性和低摩擦系数。

因此,涂层刀具的切削速度比未涂层刀具可提高2倍以上,并允许有较高的进给量。

涂层刀具的寿命也得到提高。

②通用性强:

涂层刀具通用性广,加工范围显著扩大,一种涂层刀具可以代替数种非涂层刀具使用。

③涂层厚度:

随涂层厚度的增加刀具寿命也会增加,但当涂层厚度达到饱和,刀具寿命不再明显增加。

涂层太厚时,易引起剥离;

涂层太薄时,则耐磨性能差。

④重磨性:

涂层刀片重磨性差、涂层设备复杂、工艺要求高、涂层时间长。

⑤涂层材料:

不同涂层材料的刀具,切削性能不一样。

如:

低速切削时,TiC涂层占有优势;

高速切削时,TiN较合适。

⑶涂层刀具的应用

涂层刀具在数控加工领域有巨大潜力,将是今后数控加工领域中最重要的刀具品种。

涂层技术已应用于立铣刀、铰刀、钻头、复合孔加工刀具、齿轮滚刀、插齿刀、剃齿刀、成形拉刀及各种机夹可转位刀片,满足高速切削加工各种钢和铸铁、耐热合金和有色金属等材料的需要。

5.硬质合金刀具材料的种类、性能和特点及应用

硬质合金刀具,特别是可转位硬质合金刀具,是数控加工刀具的主导产品,20世纪80年代以来,各种整体式和可转位式硬质合金刀具或刀片的品种已经扩展到各种切削刀具领域,其中可转位硬质合金刀具由简单的车刀、面铣刀扩大到各种精密、复杂、成形刀具领域。

⑴硬质合金刀具的种类

按主要化学成分区分,硬质合金可分为碳化钨基硬质合金和碳(氮)化钛(TiC(N))基硬质合金。

碳化钨基硬质合金包括钨钴类(YG)、钨钴钛类(YT)、添加稀有碳化物类(YW)三类,它们各有优缺点,主要成分为碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)、碳化铌(NbC)等,常用的金属粘接相是Co。

碳(氮)化钛基硬质合金是以TiC为主要成分(有些加入了其他碳化物或氮化物)的硬质合金,常用的金属粘接相是Mo和Ni。

ISO(国际标准化组织)将切削用硬质合金分为三类:

K类,包括Kl0~K40,相当于我国的YG类(主要成分为WC.Co)。

P类,包括P01~P50,相当于我国的YT类(主要成分为WC.TiC.Co)。

M类,包括M10~M40,相当于我国的YW类(主要成分为WC-TiC-TaC(NbC)-Co)。

各个牌号分别以01~50之间的数字表示从高硬度到最大韧性之间的一系列合金。

⑵硬质合金刀具的性能特点

硬质合金刀具的性能特点如下:

①高硬度:

硬质合金刀具是由硬度和熔点很高的碳化物(称硬质相)和金属粘结剂(称粘接相)经粉末冶金方法而制成的,其硬度达89~93HRA,远高于高速钢,在5400C时,硬度仍可达82~87HRA,与高速钢常温时硬度(83~86HRA)相同。

硬质合金的硬度值随碳化物的性质、数量、粒度和金属粘接相的含量而变化,一般随粘接金属相含量的增多而降低。

在粘接相含量相同时,YT类合金的硬度高于YG类合金,添加TaC(NbC)的合金具有较高的高温硬度。

②抗弯强度和韧性:

常用硬质合金的抗弯强度在900~1500MPa范围内。

金属粘接相含量越高,则抗弯强度也就越高。

当粘接剂含量相同时,YG类(WC-Co)合金的强度高于YT类(WC-TiC-Co)合金,并随着TiC含量的增加,强度降低。

硬质合金是脆性材料,常温下其冲击韧度仅为高速钢的1/30~1/8。

⑶常用硬质合金刀具的应用

YG类合金主要用于加工铸铁、有色金属和非金属材料。

细晶粒硬质合金(如YG3X、YG6X)在含钴量相同时比中晶粒的硬度和耐磨性要高些,适用于加工一些特殊的硬铸铁、奥氏体不锈钢、耐热合金、钛合金、硬青铜和耐磨的绝缘材料等。

YT类硬质合金的突出优点是硬度高、耐热性好、高温时的硬度和抗压强度比YG类高、抗氧化性能好。

因此,当要求刀具有较高的耐热性及耐磨性时,应选用TiC含量较高的牌号。

YT类合金适合于加工塑性材料如钢材,但不宜加工钛合金、硅铝合金。

YW类合金兼具YG、YT类合金的性能,综合性能好,它既可用于加工钢料,又可用于加工铸铁和有色金属。

这类合金如适当增加钴含量,强度可很高,可用于各种难加工材料的粗加工和断续切削。

6.高速钢刀具的种类和特点及应用

高速钢(HighSpeedSteel,简称HSS)是一种加入了较多的W、Mo、Cr、V等合金元素的高合金工具钢。

高速钢刀具在强度、韧性及工艺性等方面具有优良的综合性能,在复杂刀具,尤其是制造孔加工刀具、铣刀、螺纹刀具、拉刀、切齿刀具等一些刃形复杂刀具,高速钢仍占据主要地位。

高速钢刀具易于磨出锋利的切削刃。

按用途不同,高速钢可分为通用型高速钢和高性能高速钢。

⑴通用型高速钢刀具

通用型高速钢。

一般可分钨钢、钨钼钢两类。

这类高速钢含加(C)为0.7%~0.9%。

按钢中含钨量的不同,可分为含W为12%或18%的钨钢,含W为6%或8%的钨钼系钢,含W为2%或不含W的钼钢。

通用型高速钢具有一定的硬度(63-66HRC)和耐磨性、高的强度和韧性、良好的塑性和加工工艺性,因此广泛用于制造各种复杂刀具。

①钨钢:

通用型高速钢钨钢的典型牌号为W18Cr4V,(简称W18),具有较好的综合性能,在6000C时的高温硬度为48.5HRC,可用于制造各种复杂刀具。

它有可磨削性好、脱碳敏感性小等优点,但由于碳化物含量较高,分布较不均匀,颗粒较大,强度和韧性不高。

②钨钼钢:

是指将钨钢中的一部分钨用钼代替所获得的一种高速钢。

钨钼钢的典型牌号是W6Mo5Cr4V2,(简称M2)。

M2的碳化物颗粒细小均匀,强度、韧性和高温塑性都比W18Cr4V好。

另一种钨钼钢为W9Mo3Cr4V(简称W9),其热稳定性略高于M2钢,抗弯强度和韧性都比W6M05Cr4V2好,具有良好的可加工性能。

⑵高性能高速钢刀具

高性能高速钢是指在通用型高速钢成分中再增加一些含碳量、含钒量及添加Co、Al等合金元素的新钢种,从而可提高它的耐热性和耐磨性。

主要有以下几大类:

①高碳高速钢。

高碳高速钢(如95W18Cr4V),常温和高温硬度较高,适于制造加工普通钢和铸铁、耐磨性要求较高的钻头、铰刀、丝锥和铣刀等或加工较硬材料的刀具,不宜承受大的冲击。

②高钒高速钢。

典型牌号,如,W12Cr4V4Mo,(简称EV4),含V提高到3%一5%,耐磨性好,适合切削对刀具磨损极大的材料,如纤维、硬橡胶、塑料等,也可用于加工不锈钢、高强度钢和高温合金等材料。

③钴高速钢。

属含钴超硬高速钢,典型牌号,如,W2Mo9Cr4VCo8,(简称M42),有很高的硬度,其硬度可达69-70HRC,适合于加工高强度耐热钢、高温合金、钛合金等难加工材料,M42可磨削性好,适于制作精密复杂刀具,但不宜在冲击切削条件下工作。

④铝高速钢。

属含铝超硬高速钢,典型牌号,如,W6Mo5Cr4V2Al,(简称501),6000C时的高温硬度也达到54HRC,切削性能相当于M42,适宜制造铣刀、钻头、铰刀、齿轮刀具、拉刀等,用于加工合金钢、不锈钢、高强度钢和高温合金等材料。

⑤氮超硬高速钢。

典型牌号,如,W12M03Cr4V3N,简称(V3N),属含氮超硬高速钢,硬度、强度、韧性与M42相当,可作为含钴高速钢的替代品,用于低速切削难加工材料和低速高精加工。

⑶熔炼高速钢和粉末冶金高速钢

按制造工艺不同,高速钢可分为熔炼高速钢和粉末冶金高速钢。

①熔炼高速钢:

普通高速钢和高性能高速钢都是用熔炼方法制造的。

它们经过冶炼、铸锭和镀轧等工艺制成刀具。

熔炼高速钢容易出现的严重问题是碳化物偏析,硬而脆的碳化物在高速钢中分布不均匀,且晶粒粗大(可达几十个微米),对高速钢刀具的耐磨性、韧性及切削性能产生不利影响。

②粉末冶金高速钢(PMHSS):

粉末冶金高速钢(PMHSS)是将高频感应炉熔炼出的钢液,用高压氩气或纯氮气使之雾化,再急冷而得到细小均匀的结晶组织(高速钢粉末),再将所得的粉末在高温、高压下压制成刀坯,或先制成钢坯再经过锻造、轧制成刀具形状。

与熔融法制造的高速钢相比,PMHSS具有优点是:

碳化物晶粒细小均匀,强度和韧性、耐磨性相对熔炼高速钢都提高不少。

在复杂数控刀具领域PMHSS刀具将会进一步发展而占重要地位。

典型牌号,如F15、FR71、GFl、GF2、GF3、PT1、PVN等,可用来制造大尺寸、承受重载、冲击性大的刀具,也可用来制造精密刀具。

3.3.3数控刀具材料的选用原则

目前广泛应用的数控刀具材料主要有金刚石刀具、立方氮化硼刀具、陶瓷刀具、涂层刀具、硬质合金刀具和高速钢刀具等。

刀具材料总牌号多,其性能相差很大。

如,表1-4-2-1各种刀具材料的主要性能指标。

数控加工用刀具材料必须根据所加工的工件和加工性质来选择。

刀具材料的选用应与加工对象合理匹配,切削刀具材料与加工对象的匹配,主要指二者的力学性能、物理性能和化学性能相匹配,以获得最长的刀具寿命和最大的切削加工生产率。

表3-3-1各种刀具材料的主要性能指标

种类

密度

/(g/cm)

耐热性/℃

硬度

抗弯强度/MPa

热导率

/[W/(m.K)]

热膨胀系数×

10-6/0C

聚晶金刚石

3.47~3.56

700~800

>

9000HV

600~1100

210

3.1

聚晶立方氮化硼

3.44~3.49

1300~1500

4500HV

500~800

130

4.7

陶瓷刀具

3.1~5.O

1200

9l~95HRA

700~1500

15.O~38.0

7.O~9.O

钨钴类

14.O~15.5

800

89~91.5HRA

1000~2350

74.5~87.9

3~7.5

钨钴钛类

9.O~14.O

900

89~92.5HRA

800~1800

20.9~62.8

通用合金

12.0~14.0

1000~1100

~92.5HRA

TiC基合金

5.O~7.O

1100

92~93.5HRA

1150~1350

8.2

高速钢

8.0~8.8

600~700

62~70HRC

2000~4500

15.O~30.O

8~12

1.切削刀具材料与加工对象的力学性能匹配

切削刀具与加工对象的力学性能匹配问题主要是指刀具与工件材料的强度、韧性和硬度等力学性能参数要相匹配。

具有不同力学性能的刀具材料所适合加工的工件材料有所不同。

①刀具材料硬度顺序为:

金刚石刀具>

立方氮化硼刀具>

陶瓷刀具>

硬质合金>

高速钢。

②刀具材料的抗弯强度顺序为:

高速钢>

金刚石和立方氮化硼刀具。

③刀具材料的韧度大小顺序为:

立方氮化硼、金刚石和陶瓷刀具。

高硬度的工件材料,必须用更高硬度的刀具来加工,刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。

刀具材料的硬度越高,其耐磨性就越好。

如,硬质合金中含钴量增多时,其强度和韧性增加,硬度降低,适合于粗加工;

含钴量减少时,其硬度及耐磨性增加,适合于精加工。

具有优良高温力学性能的刀具尤其适合于高速切削加工。

陶瓷刀具优良的高温性能使其能够以高的速度进行切削,允许的切削速度可比硬质合金提高2~10倍。

2.切削刀具材料与加工对象的物理性能匹配

具有不同物理性能的刀具,如,高导热和低熔点的高速钢刀具、高熔点和低热胀的陶瓷刀具、高导热和低热胀的金刚石刀具等,所适合加工的工件材料有所不同。

加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。

金刚石由于导热系数及热扩散率高,切削热容易散出,不会产生很大的热变形,这对尺寸精度要求很高的精密加工刀具来说尤为重要。

①各种刀具材料的耐热温度:

金刚石刀具为700~8000C、PCBN刀具为13000~15000C、陶瓷刀具为1100~12000C、TiC(N)基硬质合金为900~11000C、WC基超细晶粒硬质合金为800~9000C、HSS为600~7000C。

②各种刀具材料的导热系数顺序:

PCD>

PCBN>

WC基硬质合金>

TiC(N)基硬质合金>

HSS>

Si3N4基陶瓷>

A1203基陶瓷。

③各种刀具材料的热胀系数大小顺序为:

WC基硬

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1