北师大版七下第五章知识点总结.doc
《北师大版七下第五章知识点总结.doc》由会员分享,可在线阅读,更多相关《北师大版七下第五章知识点总结.doc(2页珍藏版)》请在冰豆网上搜索。
北师大版《数学》(七年级下册)第五章知识点总结
一、轴对称
1、轴对称图形:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:
对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
3、性质:
(1)对应点所连的线段被对称轴垂直平分。
(2)对应线段相等,对应角相等。
二轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
三等腰三角形
1、等腰三角形:
有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:
(1)等腰三角形的两个底角相等,简写成“等边对等角”
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),
(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
3、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等
四、等边三角形:
1、等边三角形:
三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:
(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定
(1)三边都相等的三角形是等边三角形。
(2):
三个角都相等的三角形是等边三角形
(3):
有一个角是60°的等腰三角形是等边三角形。
五线段的垂直平分线(简称中垂线):
定义:
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
性质:
线段垂直平分线上的点到这条线段两个端点的距离相等。
六、角平分线的性质:
1、角平分线所在的直线是该角的对称轴。
2、性质:
角平分线上的点到这个角的两边的距离相等。
尺规作图的定义:
尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图,通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
题目一:
作一条线段等于已知线段。
已知:
如图,线段a.
求作:
线段AB,使AB=a.
作法:
(1)作射线AP;
(2)在射线AP上截取AB=a.
则线段AB就是所求作的图形。
题目二:
作已知线段的中点。
已知:
如图,线段MN.
求作:
点O,使MO=NO(即O是MN的中点).
作法:
(1)分别以M、N为圆心,大于
的相同线段为半径画弧,
两弧相交于P,Q;
(2)连接PQ交MN于O.
则点O就是所求作的MN的中点。
(试问:
PQ与MN有何关系?
)
题目三:
作已知角的角平分线。
已知:
如图,∠AOB,
求作:
射线OP,使∠AOP=∠BOP(即OP平分∠AOB)。
作法:
(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;
(2)分别以M、N为圆心,大于 的相同线段为半径画弧,两
弧交∠AOB内于P;
(3)作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:
作一个角等于已知角。
(请自己写出“已知”“求作”并作出图形,不写作法)
题目五:
已知三边作三角形。
已知:
如图,线段a,b,c.
求作:
△ABC,使AB=c,AC=b,BC=a.
作法:
(1)作线段AB=c;
(2)以A为圆心b为半径作弧,
以B为圆心a为半径作弧与
前弧相交于C;
(3)连接AC,BC。
则△ABC就是所求作的三角形。
题目六:
已知两边及夹角作三角形。
已知:
如图,线段m,n,∠.
求作:
△ABC,使∠A=∠,AB=m,AC=n.
作法:
(1)作∠A=∠;
(2)在AB上截取AB=m,AC=n;
(3)连接BC。
则△ABC就是所求作的三角形。
题目七:
已知两角及夹边作三角形。
已知:
如图,∠,∠,线段m.
求作:
△ABC,使∠A=∠,∠B=∠,AB=m.作法:
(1)作线段AB=m;
(2)在AB的同旁作∠A=∠,作∠B=∠,∠A与∠B的另一边相交于C。
则△ABC就是所求作的图形(三角形)。
2
第页