毕业设计.docx
《毕业设计.docx》由会员分享,可在线阅读,更多相关《毕业设计.docx(18页珍藏版)》请在冰豆网上搜索。
毕业设计
网络教育学院
本科生毕业论文(设计)
题目:
浅谈混凝土结构裂缝成因及控制措施
学习中心:
安徽池州奥鹏学习中心
层次:
专升本
专业:
土木工程
年级:
1103
学号:
111408303133
学生:
吴俊
指导教师:
瑜璐
完成日期:
2013.1.15
内容摘要
在钢筋砼结构领域,存在着一个相当普遍的质量问题就是结构的裂缝问题。
由于结构在外荷载作用下的破坏和倒塌都是从裂缝扩展开始的,因此人们对裂缝隙往往产生一种建筑破坏的恐惧感。
混凝土是粗集料、细集料、水泥、石、水和气体所组成的非均质堆聚结构,在成型后随温度、湿度等环境条件的影响会形成肉眼看不到的微裂缝。
由于混凝土的组成材料和微观构造不同以及受环境影响的不同,混凝土产生裂缝的原因很复杂。
钢筋砼结构的裂缝是不可避免的,但其有害程度却是可以控制的,有害与无害的界限由结构的使用功能决定,裂缝控制的主要方法是通过设计、施工、材料等方面综合技术措施将裂缝控制在无害范围内的。
目前世界各国的规定不完全一致,但大致相同。
如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.1mm。
近年来,许多国家已根据大量试验与泵送混凝土的经验将其放宽到0.2mm。
当结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,钢筋混凝土裂缝宽度可放宽至0.4mm;在湿气及土中为0.3mm;在海水及干湿交替中为0.15mm。
本文从施工技术措施出发,兼顾设计和材料等方面,阐述楼面裂缝的产生原因及防治措施。
关键词:
钢筋砼;裂缝;原因;防治措施
目录
内容摘要3
引言1
1绪言2
2混凝土裂缝的种类及成因3
2.1荷载引起的裂缝3
2.1.1直接应力裂缝3
2.1.2次应力裂缝3
2.1.3 荷载裂缝分类及其特征4
2.2温度变化引起的裂缝5
2.3收缩引起的裂缝5
2.4 钢筋锈蚀引起的裂缝6
2.5 冻胀引起的裂缝6
2.6 材料质量引起的裂缝7
2.7 施工质量引起的裂缝7
3混凝土裂缝的控制措施及处理技术9
3.1混凝土结构裂缝的预防措施9
3.1.1设计方面9
3.1.2材料选择和混凝土配合比设计方面9
3.1.3现场操作措施10
3.2混凝土结构裂缝的处理技术11
4工程实例分析12
4.1工程概况12
4.2工程设想12
4.3工程抗裂施工措施12
4.3.1基础地基加固12
4.3.2优化混凝土配合比12
4.3.3内外防水剂14
4.4其他措施14
5结论与展望16
参考文献17
引言
随着我国国民经济的高速发展,钢筋混凝土结构已经普遍用于工业和民用建筑中。
在建筑工程施工过程中,混凝土是城市建设中广泛使用的结构材料,但是伴随这类材料的生产研究与应用,混凝土结构的裂缝问题一直受到人们关注。
钢筋混凝土结构出现裂缝不仅种类繁多,形态各异,而且较普遍,尤其是楼板的裂缝,轻者影响建筑物美观,造成渗漏水,重者降低建筑结构的承载力、稳定性和整体性,甚至还会导致整体倒塌的重大质量事故。
这类裂缝是在现有施工技术条件下较难克服的质量通病之一,特别是民用建筑工程结构楼面出现裂缝,往往会引起业主对工程质量提出异议,从而引发投诉、纠纷以及索赔等情况。
因此,正确分析裂缝产生原因,切实加以防治十分必要,十分迫切。
因此研究混凝土结构的裂缝产生原因及控制具有重要的社会意义和经济意义。
1
1绪言
近年来,我国基础建设得到迅猛发展,各地兴建了大量的混凝土建筑。
在建筑物的建造和使用过程中,有关因出现裂缝而影响工程质量甚至导致结构垮塌的报道屡见不鲜。
混凝土开裂可以说是“常发病”和“多发病”,经常困扰着工程技术人员。
其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。
为了进一步加强对混凝土结构裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土、裂缝的种类和产生的原因作较全面的分析,并总结出一系列的控制方法,以方便设计、施工单位参考,达到防范于未然的作用。
2混凝土裂缝的种类及成因
实际上,混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因,比如:
温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
本章将就混凝土结构中常见裂缝种类,及其结构中占主要部分的裂缝进行成因分析。
2.1荷载引起的裂缝
2.1.1直接应力裂缝
直接应力裂缝是指外荷载引起的直接应力产生的裂缝。
裂缝产生的原因有:
(一)设计原因产生的裂缝
设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。
结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
(二)施工原因产生的裂缝
施工阶段,不加限制地堆放施工机具、材料;不了解预制构件受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
(三)使用阶段产生的裂缝
使用阶段,超出设计载荷的重型机械搬运安置过程中的接触、撞击;发生大风、大雪、地震、爆炸等。
2.1.2次应力裂缝
次应力裂缝是指由外荷载引起的次生应力产生裂缝。
裂缝产生的原因有:
(一)在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。
例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
(二)结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。
研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。
在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。
因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。
实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。
次应力裂缝多属张拉、劈裂、剪切性质。
次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。
例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。
在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。
2.1.3 荷载裂缝分类及其特征
荷载裂缝特征依荷载不同而异呈现不同的特点。
这类裂缝多出现在受拉区、受剪区或振动严重部位。
但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。
根据结构不同受力方式,产生的裂缝特征如下:
(一)中心受拉。
裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。
采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。
(二)中心受压。
沿构件出现平行于受力方向的短而密的平行裂缝。
(三)受弯。
弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。
采用螺纹钢筋时,裂缝间可见较短的次裂缝。
当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。
(四)大偏心受压。
大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。
(五)小偏心受压。
小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。
(六)受剪。
当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。
(七)受扭。
构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。
(八)受冲切。
沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。
(九)局部受压。
在局部受压区出现与压力方向大致平行的多条短裂缝。
2.2温度变化引起的裂缝
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或原有混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力,有时温度应力可超过其它外荷载所引起的应力,当这些拉应力超出混凝土的抗裂能力时即会出现裂缝。
因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。
温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。
2.3收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。
在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。
(一)塑性收缩:
发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。
塑性收缩所产生量级很大,可达1%左右。
在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。
在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。
为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。
(二)缩水收缩(干缩):
混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。
因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。
混凝土硬化后收缩主要就是缩水收缩。
如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
(三)自生收缩:
自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
(四)炭化收缩:
大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。
炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。
炭化收缩一般不做计算。
2.4 钢筋锈蚀引起的裂缝
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。
由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。
要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。
2.5 冻胀引起的裂缝
大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。
尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。
冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。
温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。
当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。
冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。
2.6 材料质量引起的裂缝
混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。
配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
(一)水泥
1、水泥安定性不合格,水泥中游离的氧化钙含量超标。
氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。
2、水泥出厂时强度不足,水泥受潮或过期,使混凝土强度不足,从而导致混凝土开裂。
3、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。
(二)砂、石骨料
1、砂石的粒径、级配、杂质含量。
2、砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大。
砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。
砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。
砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度。
砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。
(三)拌和水及外加剂
拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。
采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。
2.7 施工质量引起的裂缝
在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。
裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:
(一)混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。
(二)混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。
(三)混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。
(四)混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。
(五)混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。
(六)用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。
(七)混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。
如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。
(八)混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。
(九)施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。
(十)施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
(十一)施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。
(十二)装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。
(十三)安装顺序不正确,对产生的后果认识不足,导致产生裂缝。
如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。
(十四)施工质量控制差。
任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。
3混凝土裂缝的控制措施及处理技术
由于裂缝的产生是多种多样的,在混凝土结构中普遍存在且危害较大,因此,要对混凝土裂缝进行认真研究、区别对待,并在设计、施工中采取各种有效的措施来预防裂缝的出现和发展。
3.1混凝土结构裂缝的预防措施
3.1.1设计方面
在建筑设计中应处理好构件中“抗”与“放”的关系。
所谓“抗”就是处于约束状态下的结构,没有足够的变形余地时,为防止裂缝所采取的有力措施,而所谓“放”就是结构完全处于自由变形无约束状态下,有足够变形余地时所采取的措施。
设计人员应灵活地运用“抗一放”结合、或以“抗”为主、或以“放”为主的设计原则。
来选择结构方案和使用的材料。
(一)设计中应尽量避免结构断面突变带来的应力集中。
如因结构或造型方面原因等而不得以时,应充分考虑采用加强措施。
(二)积极采用补偿收缩混凝土技术:
见的混凝土裂缝中,有相当部分都是由于混凝土收缩而造成的。
要解决由于收缩而产生的裂缝,可在混凝土中掺用膨胀剂来补偿混凝土的收缩,实践证明,效果是很好的。
(三)重视对构造钢筋的认识:
在结构设计中,设计人员应重视对于构造钢筋的配置,特别是于楼面、墙板等薄壁构件更应注意构造钢筋的直径和数量的选择。
(四)对于大体积混凝土,建议在设计中考虑采用60天龄期混凝土强度值作为设计值,以减少混凝土单方用灰量,并积极采用各类行之有效的混凝土掺合料。
3.1.2材料选择和混凝土配合比设计方面
(一)根据结构的要求选择合适的混凝土强度等级及水泥品种、等级,尽量避免采用早强高的水泥。
(二)选用级配优良的砂、石原材料,含泥量应符合规范要求。
(三)积极采用掺合料和混凝土外加剂。
掺合料和外加剂目标已作为混凝土的第五、六大组份,可以明显地起到降低水泥用量、降低水化热、改善混凝土的工作性能和降低混凝土成本的作用。
(四)正确掌握好混凝土补偿收缩技术的运用方法。
对膨胀剂应充发考虑到不同品种、不同掺量所起到的不同膨胀效果。
应通过大量的试验确定膨胀剂的最佳掺量。
(五)配合比设计人员应深入施工现场,依据施工现场的浇捣工艺、操作水平、构件截面等情况,合理选择好混凝土的设计坍落度,针对现场的砂、石原材料质量情况及时调整施工配合比,协助现场搞好构件的养护工作。
3.1.3现场操作措施
(一)浇捣工作:
浇捣时,振捣捧要快插慢拔,根据不同的混凝土坍落度正确掌握振捣时间,避免过振或漏振,应提倡采用二次振捣、二次抹面技术,以排除泌水、混凝土内部的水分和气泡。
(二)混凝土养护:
在混凝土裂缝的防治工作中,对新浇混凝土的早期养护工作尤为重要。
以保证混凝土在早期尽可能少产生收缩。
主要是控制好构件的湿润养护,对于大体积混凝土,有条件时宜采用蓄水或流水养护。
养护时间为14—28天。
施工中必须坚持草包或麻袋进行一周左右的养护。
应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,因此说寒冷地区的混凝土保温对防止表面早期裂缝尤为重要。
混凝土的早期养护,重要目的在于保持适宜的温湿条件,已达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵蚀,防止有害的冷缩和干缩。
一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。
混凝土的保温效果常常也有保湿的效果。
从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求,但由于蒸发等原因,常常引起水分损失,从而推迟或妨碍水泥的水化,表面混凝土最容易受到这种不利影响。
因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应重视。
(三)混凝土的降温和保温工作:
对于厚大体积混凝土,施工时应充分考虑水泥水化热问题。
采取必要的降温措施(埋设散热孔、通水排热等),避免水化热高峰的集中出现、降低峰值。
浇捣成型后,应采取必要的蓄水保温措施,表面覆盖薄膜、湿麻袋等进行养护,以防止由于混凝土内外温差过大而引起的温度裂缝。
(四)避免在雨中或大风中浇灌混凝土。
(五)对于地下结构混凝土,尽早回填土,对减少裂缝有利。
(六)夏季应注意混凝土的浇捣温度,采用低温人模、低温养护,必要时经试验可采用冰块,以降低混凝土原材料的温度。
3.2混凝土结构裂缝的处理技术
建筑物从建成到使用,牵涉到设计、施工、监理、运营管理等各个方面。
由上述可知,设计疏漏、施工低劣、监理不力,均可能使混凝土结构出现裂缝。
因此,严格按照国家有关规范、技术标准进行设计、施工和监理,是保证结构安全耐用的前提和基础。
在运营管理过程中,进一步加强巡查和管理,及时发现和处理问题,也是相当重要的一个环节。
混凝土裂缝的处理主要有以下方法:
(一)表面处理法:
包括表面涂抹和表面贴补法
表面涂抹适用范围是浆材难以灌入的细而浅的裂缝,深度未达到钢筋表面的发丝裂缝,不漏水的缝,不伸缩的裂缝以及不再活动的裂缝。
表面贴补(土工膜或其它防水片)法适用于大面积漏水(蜂窝麻面等或不易确定具体漏水位置、变形缝)的防渗堵漏
(二)填充法
用修补材料直接填充裂缝,一般用来修补较宽的裂缝(0.3mm),作业简单,费用低。
宽度小于0.3mm,深度较浅的裂缝、或是裂缝中有充填物,用灌浆法很难达到效果的裂缝、以及小规模裂缝的简易处理可采取开V型槽,然后作填充处理。
(三)灌浆法
此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。
(四)结构补强法
因超荷载产生的裂缝、裂缝长时间不处理导致的混凝土耐久性降低、火灾造成的裂缝等影响结构强度可采取结构补强法。
包括断面补强法、锚固补强法、预应力法等
4工程实例分析
4.1工程概况
内官水厂工程位于内官镇西南角,北临道清路,占地70000平方米,属群体工程,其中包括沉淀池、清水池、废水池、吸水井、液铝池等多个大型现浇钢筋混凝土水池。
这些大型水池池壁高4~7.6米,均为10万m2/d处理能力规模,设计要求水池完全无渗漏。
大型水池池壁高,迎水面延长米极长沉淀池长宽分别为107米和26米、清水池长为40米,但池壁厚度不厚,仅在260~300毫米之间,均为现浇钢筋混凝土板壁。
水池储水量大,水压力高,若施工技术措施不完备或施工不当,极易造成大面积渗漏水。
4.2工程设想
(1)为防止因地基不均匀沉降而导致水池结构性开裂渗漏水,基础地基加固采用砂垫层方法处理。
(2)防止大体积现浇钢筋混凝土的收缩裂缝出现,在抗渗混凝土内掺入HEA高效防水剂和延长大型水池长度方向设置垂直伸缩缝。
(3)为提高现浇混凝土的抗渗性能,在混凝土池壁内外侧涂抹防水剂。
(4)在工程施工过程中,采用一些技术措施进一步保证现浇钢砼水池的抗渗性能。
4.3工程抗裂施工措施
4.3.1基础地基加固
为减少基础沉降,提高地基承载力,地基加固处理采用换填法,即采用砂垫层的方法。
以保证结构沉降为