精品年产1000吨饲用酸性蛋白酶的生产工艺设计毕业论文Word格式文档下载.docx
《精品年产1000吨饲用酸性蛋白酶的生产工艺设计毕业论文Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《精品年产1000吨饲用酸性蛋白酶的生产工艺设计毕业论文Word格式文档下载.docx(17页珍藏版)》请在冰豆网上搜索。
2.2菌种的保藏
菌种是从事微生物学以及生命科学研究的基本材料,特别是利用微生物进行有关生产工业,更离不开菌种。
所以,菌种保藏是进行微生物学研究和微生物育种工作的重要组成部分,其任务是使菌种不死亡,同时还要尽可能设法把菌种的优良特性保持下来而不致向坏的方面转化。
菌种保藏主要是根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异。
一般可通过保持培养基营养成分在最低水平、缺氧状态、干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力。
常用的菌种保藏方法有:
斜面冰箱保藏法、沙土管保藏法、菌丝速冻法、石蜡油封存法、真空冷冻干燥保藏法和液氮超低温保藏法。
此课题中黑曲霉采用真空冷冻干燥保藏法,预冻:
本实验采用-80℃预冻2h后进行干燥。
干燥过程:
第一阶段干燥.样品温度分别控制在-15℃14,备用。
3.2种子培养基
种子培养基是供孢子发芽、生长和大量繁殖菌丝体,并使菌丝体长的粗壮成为活力强的种子。
对于种子培养基的营养要求比较丰富和完全,氮源和维生素的含量也比较高些,浓度以稀薄为好,可以达到较高的溶解氧,供大量菌体生长和繁殖。
黑曲霉的种子培养基为麦芽汁培养基。
3.3发酵培养基
发酵培养基的要求是营养要适当丰富和完全适合于菌种的生理特性和要求,使菌种迅速生长、健壮,能在比较短的周期内充分发挥产生菌合成发酵产物的能力,但要注意成本和能耗。
黑曲霉3.350发酵培养基的配方:
豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1.0%,氯化钙0.5%,磷酸二氢钠0.2%,豆饼石灰水解液10%,pH5.5。
3.4补料培养基
豆饼粉37.5%,玉米粉0.625%,鱼粉0.625%,氯化铵1.0%,氯化钙0.5%,磷酸二氢钠0.2%,豆饼石灰水解液10%,pH5.5。
主要加大豆饼粉的量,起补充碳源,氮源和生长因子之用。
4.灭菌
生物化学反应过程中,特别是细胞培养过程中,往往要求在没有杂菌污染的情况下进行,这是由于生物反应系统中通常含有比较丰富的营养物质,因而很容易受到杂菌的污染,进而产生各种不良的后果:
(1)由于杂菌的污染,使生物化学反应的基质或产物消耗,造成产率下降;
(2)由于杂菌所产生的某些代谢产物,或污染后发酵液的某些理化性质的改变,使产物的提取变得困难,造成收得率降低或使产品质量下降;
(3)污染的杂菌可能会分解产物而使生产失败;
(4)污染的杂菌大量繁殖,会改变反应介质的pH,从而使生物化学反应发生异常变化;
(5)发生噬菌体污染,微生物细胞被破裂而使生产失败等。
4.1灭菌方法
所谓灭菌,就是指用物理或化学杀灭或去除物料或设备中一切有生命物质的过程。
常用的灭菌方法有:
化学灭菌、射线灭菌、干热灭菌、湿热灭菌和过滤灭菌等。
本设计采用湿热灭菌。
4.2培养基的连续灭菌
图4-1连续灭菌的流程图
培养基连续灭菌为在短时间内被加热到灭菌温度(130℃~140℃),短时间内保温(一般为5~8min),升降温时间相对较短,可以实现自动控制、提高发酵罐的设备利用率,蒸汽用量平稳等优点,培养基在短时间内被加热到灭菌温度,短时间保温后快速冷却,再进入早已灭完菌的发酵罐,这样不但可以节省时间,更重要的是减少了培养基的破坏率。
对补料培养基的灭菌方法跟发酵培养基的灭菌方法一样都是湿热灭菌,其加热蒸汽压力要求较高,一般不小于0.45MPa。
连续灭菌流程如上图。
影响灭菌效果的因素有:
微生物的种类和数量;
培养基的性质、浓度、成分;
灭菌的温度和时间。
灭菌原理:
对数残留定律(对培养基进行湿热灭菌时,培养基中的微生物受热死亡的速率与残存的微生物数量成正比)。
4.3空气灭菌
此课题以空气为氧源。
根据国家药品质量管理规范的要求,生物制品、药品的生产场地业需要符合空气洁净度的要求。
获得无菌空气的方法有:
辐射灭菌、化学灭菌、加热灭菌、静电除菌、过滤介质除菌等。
过滤介质除菌是目前发酵工业中空气除菌的主要手段,常用的过滤介质有棉花、活性炭或玻璃纤维、有机合成纤维、有机和无机烧结材料等。
4.3.1过滤除菌流程及设备
过滤除菌流程图如图4-1所示:
1-粗过滤器;
2-压缩机;
3-贮罐;
4,6-冷却器;
5-旋风分离器;
7-丝网除沫器;
8-加热器;
9-空气过滤器
图4-1空气除菌设备流程图
4.3.2无菌空气的检查
无菌检查方法有肉汤培养法、斜面培养法和双碟培养法。
这里采用斜面培养法进行无菌空气的检查,具体方法为:
500ml三角瓶内装斜面培养基50ml,接种后置旋转式摇床上,30℃下培养24h后观察有无菌落形成。
4.4发酵罐的灭菌
发酵罐的灭菌可采用空罐灭菌,此处采用空罐灭菌。
空罐灭菌是将所有的通气口都稍微打开,然后通入水蒸汽,让水蒸汽尽量通过每一个菌落达到灭菌效果。
具体方法是:
在121℃灭菌80分钟。
5.种子扩大培养
本发酵属于一级种子罐扩大培养,二级发酵。
设计流程图如图5-1:
图5-1种子扩大培养流程图
5.1种子制备
将菌种接种于活化斜面培养基培养,30℃活化24h。
活化后的菌种用生理盐水洗下,转接于摇瓶种子培养基,接种量5%~6%,30℃培养12h。
经摇瓶培养后的种子,以接种量5%接种于种子罐,30℃培养12h,菌种浓度达到108~109个mL。
5.2发酵罐培养
将扩大培养后的菌种以5%的接种量接入发酵罐中,发酵温度控制在30℃,罐压0.5㎏cm2,发酵过程中通过流加Na0H溶液控制发酵液pH。
根据菌体浓度、pH决定具体发酵时间为35.5h。
发酵过程中采用自动搅拌器,将转速控制在100rmin,使流加碱液与发酵液快速混合均匀。
6.发酵罐的设计
广东省微生物研究所通过改变摇瓶装液量和转速来考察溶氧对黑曲霉菌种的影响。
实验结果表明:
在250ml的三角瓶中装液量为100ml,转速150rmin酶活最高,装液量过多或过少,产酶量较低。
摇床转速较低时,通气量不够,生长较慢,产酶量也低。
当摇床转速过快时,产酶量也不高,可能是菌丝断裂过度。
培养基中的营养主要被菌体用于自身的生长。
此课程设计中选择使用机械搅拌式通风发酵罐。
机械搅拌通风发酵罐是发酵工厂最常用类型。
它是利用机械搅拌器的作用,使空气和发酵液充分混合,促使氧在发酵液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气。
6.1发酵罐的结构
机械搅拌式通风发酵罐的主要组成部件有:
罐体、搅拌器、轴封、消泡器、联轴器、中间轴承、空气吹泡管(或空气喷射器)、挡板、冷却装置、人孔以及管路等。
6.2发酵罐罐体的几何尺寸计算
1.发酵罐普遍H0D=1.97,而酸性蛋白酶对空气有一定要求,为了使之更大面积的接受氧气,黑曲霉所用发酵罐设计为矮胖形,即:
H0D=1.63,从通风角度讲,空压机为无油润滑一级压缩,出口压力0.3MPa。
压缩空气经过约60m米以上路程才送到发酵车间,管道阻力加上空气过滤器阻力,空气压降厉害,若大型发酵罐再设计成瘦高形,势必会增加液柱高度,直接影响到进罐通风管口空气的压头和流速,若空压机房贮气筒压头稍有波动产生下降,发酵罐进风口风速无喷力,对供气量及溶氧带来不利影响。
所以大型发酵罐设计成矮胖形可降低液柱高度,有利通风溶氧。
2.发酵罐上下封头采用十二块西瓜片拼装而成,顶部中心太阳板直径Φ1800,在现场施工拼装,解决了封头整体成形无法运输的困难。
3.传动部采用卧式电动机通过联轴节带动大型减速箱直接带动搅拌轴,就是减速箱内设一对弧形伞齿轮使进轴作90°
变向用联轴节通过十二根尼龙销棒联接卧式电动机。
既降低了设备安装高度,又给安装维修带来了很大方便,如图:
图6-1传动部卧式电动机联轴图
四台发酵罐采用二种减速箱,前二台罐为迸口减速箱,减速箱内装有一对直齿轮和一对弧形伞齿轮,结构简单,维修方便,一般只有伞齿轮及进轴、轴承损坏要维修更新。
后二台罐采用国产福州发电设备厂生产的行星齿轮箱,箱内加设一对弧形伞齿轮使进轴作90°
变向,由联轴节与卧式电动机相联。
与进口减速箱比,结构复杂、行星轮坏很难修理。
4.减速箱下传动架上传动轴设计安放一部轴承座,内装中型普通轴承一粒,轻型平面受力轴承一粒,轴承上端轴头由夹壳联轴节与减速箱出轴联接。
设计少放一部轴承降低传动架约米的高度,增强了减速箱及电机在罐顶上的稳定性。
罐内设计放二部轴瓦来定位罐内轴与上主轴的同心度,上部轴瓦在盘管上方,下部轴瓦安装在轴端。
轴瓦、轴套材质均为铸铁。
只要上下轴垂直同心度装得好,轴瓦、轴套半年到一年更换一次。
5.对发酵罐来讲,冷却面积及冷却管的设计非常重要,既要考虑排作形式,又要起到最好冷却效果,还要便于安装维修。
设计中采取盘管式,列管式同时采用的做法,加设盘管组相对来讲好布置,可利用盘管间之间隙当楼梯用,给安装及今后维修带来很大方便。
加设列管组可弥补全用盘管时需用冷却面积的管量放不下和盘管无档板作用的缺点。
考虑罐径大,放热量集中冷却效果一定要好,所以又在冷却管的合理进出水上做文章,采用快进快出的接管法,就是把盘管列管分成多组,使冷却水分成多路进多路出,以水在冷却管内1.5米秒停留1分钟来分组。
与发酵液热交换后的热水汇集总管进热水池、再用泵送冷却塔,冷却后的水进冷水池,由泵供送发酵罐进水用。
原则冷却塔循环水量要大于发酵用水量约倍,保证热水通过冷却塔及时降温到气温夏天满足发酵冷却用水的需要,如图
图6-2发酵罐冷却管设计
6.搅拌桨叶形式及档次直接影响到产酸及搅拌功率,由于罐体矮胖形,罐径大,,设计采用大桨叶,低转速。
底道桨Φ1900,八弯叶,中道桨小,六弯叶,转速65r.p.m。
所以,采用高通风,大桨叶,低转速搅抖,可降低搅拌功率,同样达到高产酸的效果。
桨叶叶片做成可装拆式,部件拿进罐内后组装,用不锈螺栓把叶片锁紧在园盘上,给运输安装带来方便,司时罐顶人孔可缩小,开Φ600即可。
八万叶轮尺寸如下:
叶径d=0.365D=0.365×
5200=1900mm,
盘径d=0.62d=0.62×
1900=1175mm,
叶片高h=0.15d=0.15×
1900=280mm,
叶片弧长L=0.4d=0.4×
1900=760mm,
风管:
罐压:
0.02MPa,罐温:
35℃,培养基量:
最大通风比1:
0.38时120m3。
液柱高度:
H=7.3米,风管出口压P=0.193MPa。
贮气筒压头P(供气最低压力):
空气输送管道阻力0.02MPa,二级空气过滤器阻力0.04MPa。
故P=0.02+0.04+0.193=0.253MPa(绝对压力)
7.进风管采用盘管式(管径根据通风量计算,在盘管上放二付不锈法兰,便于安装及今后清洗,盘管径等于低道桨径。
盘管放在底道桨叶片下面,盘管下方开三排小孔,,二排成45°
角,小孔径Φ4~6,交叉排列、这样有利于罐底部液体的搅拌和通风,且不易被固体物堵塞,孔数根据盘管内截面积计算,小孔总面积镇盘管内截面积,使风通过各个小孔时有产生喷力。
8.罐体支座设计成由六根园柱脚支承整台罐体放在盆形的水泥墩上,放料管从罐底中接出斜穿过水泥墩壁排水孔引接到打料泵送等电点提取。
避免了裙座造成罐底难清洗,死角多,长杂菌、难消毒的缺点。
整台罐底下通风好,阳光照,清洗消毒非常方便。
9.利用下轴瓦座筒形架下部四孔封上2目不锈钢网来捕集罐内螺褚全、螺母等另部件的脱落回收,给查罐时及时提供维修信息,保证了放料阀、打料泵不易损
坏,使用安全可靠性。
6.3发酵罐壁厚
6.3.1罐体壁厚
δ1=pD(2σψ-p)+C(6-2)
式(6-2)中:
p—耐受压强(取0.25MPa)
ψ—焊缝系数,双面焊取0.8,无缝焊取1.0
σ—设计温度下的许用应力(不锈钢焊接压力容器许用应力为150℃,137MPa)
C—腐蚀裕度,当δ-C<
10mm时,C=3mm
解得罐体壁厚
δ1=pD(2σψ-p)+C=0.25×
1500(2×
137×
0.8-0.25)+3=4.7mm
取整为δ1=5mm
6.3.2封头壁厚
δ2=pDy(2σψ)+C(6-3)
式(6-3)中:
y—开孔系数,取2.3
ψ—焊缝系数,双面焊取0.8,无缝焊取1.0
解得封头壁厚
δ2=pDy(2σψ)+C=0.25×
1500×
2.3(2×
0.8)+3=6.9mm
取整为δ2=7mm
6.4发酵罐个数的确定
已知年产量为1000吨,一年有300个工作日,黑曲霉发酵周期T=48h=2d,其中清理发酵罐1天,产量为50gL,罐压0.5㎏㎝2。
查相关资料有:
酸性蛋白酶发酵周期48h,清理及维修发酵罐时间为1天,则发酵总时间为3天,产量为50gL,灭菌时间为5h,发酵液预处理收率约为90%,提取时的收率约为95%,浓缩干燥收率为90%,装料系数为60%
一年需放罐的次数:
300÷
3=100次
总提取率为:
90%×
95%×
90%=76.95%
假设用一台发酵罐,则发酵罐的体积V=10×
100076.95%60%50=433.2m3
选发酵罐的公称体积为200m3,则需要发酵罐3个,则购置4台发酵罐,一台备用。
6.5发酵罐附属结构的计算
6.5.1搅拌器
搅拌桨叶形式及档次直接影响到产酸及搅拌功率,由于罐体矮胖形,罐径大,,设计采用大桨叶,低转速。
6.5.2手孔、视镜、温度计和工艺接管
温度计:
加强套管温度计的选用可以参考生产厂家的产品目录,这里取公称式平焊钢制管法兰》)。
工艺接管:
(《钢制管法兰型式、参数(欧洲体系)》)。
加热蒸汽进口管采用Ф38×
3.5无缝钢管,配法兰PNO.6,DN32,冷凝液出口管和压力表接管都选用Ф32×
3.5无缝钢管,配法兰PNO.6,DN25,
6.6发酵设备一览表
通过设备的工艺设计计算,可列出淀粉酶生产的所有设备,如表4-1
表6-61000ta酸性蛋白酶生产车间设备一览表
序号
设备名称
台数
规格与型号
材料
1
发酵罐
6
公称容积200m3,5200mm
A3钢
2
种子罐
3
公称容积5m3,1400mm
种子罐分过滤器
40mm
4
发酵罐分过滤器
300mm
5
连消塔
350×
2600mm
维持罐
V=4m3
7
喷淋冷却器
F=171.9m2
8
螺旋板换热器
F=20m2
9
预处理罐
V=100m3
10
硅藻土过滤机
WK500-A
11
真空浓缩锅
SZN—1200
12
盐析罐
V=50m3
13
板框压滤机
XYJ800
14
物料泵
GNF64×
机体铸铁
15
清水泵
JL×
20-36-G
16
空气压缩机
4L-402-3.2
17
空气贮罐
1300mm
18
油水分离器
600mm
19
丝网分离器
120mm
20
热交换器
JM220QF
7.发酵车间的物料衡算
7.1工艺技术指标及基础数据
7.1.1主要技术指标见表7-1
表7-1黑曲霉主要技术指标
指标名称
单位
指标数
生产规模(G)
ta
1000
产品纯度
%
95
年生产天数(D)
da
300
接种量
产品质量(U)
IUmg
50
发酵罐装料系数(η1)
60
倒罐率(η0)
2.0
放罐发酵单位(Um)
IUml
8000
发酵周期(T)
d
提取总收率(η2)
77
7.1.2培养基(gL)
豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1.0%,氯化钙0.5%,磷酸二氢钠0.2%,豆饼石灰水解液10%,pH5.5.
菌种培养基的配置:
查氏培养基NaNO32g,KHPO41g,KCl0.5g,MgSO45g,FeSO40.01g,蔗糖30g,琼脂15g,水1000ml,pH自然。
7.2发酵车间的物料衡算
7.2.1放罐成熟发酵液量
成熟发酵液放罐单位为Um=8000IUmL,生产G=1000t酸性蛋白酶发酵液量为:
V0=(G×
U)(Um×
η2×
98%×
95%)(7-1)
式(7-1)中:
G—生产规模
U—产品质量
Um—放罐发酵单位
95%—产品的纯度
98%—除去倒罐率2%后的发酵成功率
7.2.2放罐成熟发酵液量V0分为三部分组成
底料V1=156960×
84%=131846.4m3
种液量V2=156960×
5%=7848m3
补料液V3=156960×
11%=17265.6m3
7.2.3培养基各组分耗用量
豆饼粉耗用量:
m1=3.75%×
156960=5886
玉米粉耗用量:
m2=0.625%×
156960=981,
鱼粉耗用量:
m3=0.625%×
156960=981
氯化铵耗用量:
m4=1.0%×
156960=1569.6
氯化钙耗用量:
m5=0.5%×
156960=7784.8
磷酸二氢钠耗用量:
m6=0.2%×
156960=313.92
豆饼石灰水解液耗用量:
m7=10%×
156960=15696
pH5.5
7.3物料衡算表
表7-31000ta黑曲霉发酵生产物料衡算表
物料名称
1000ta黑曲霉生产的物料量
每周期物料量
豆饼粉㎏
玉米粉㎏
鱼粉㎏
氯化铵㎏
氯化钙㎏
磷酸二氢钠㎏
豆饼石灰水解液㎏
HCI
5886
981
1569.6
7784.8
313.92
15696
据情况而定
588.6
98.1
156.96
778.