计算机控制技术实验二Word格式文档下载.docx

上传人:b****5 文档编号:17092300 上传时间:2022-11-28 格式:DOCX 页数:16 大小:181.89KB
下载 相关 举报
计算机控制技术实验二Word格式文档下载.docx_第1页
第1页 / 共16页
计算机控制技术实验二Word格式文档下载.docx_第2页
第2页 / 共16页
计算机控制技术实验二Word格式文档下载.docx_第3页
第3页 / 共16页
计算机控制技术实验二Word格式文档下载.docx_第4页
第4页 / 共16页
计算机控制技术实验二Word格式文档下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

计算机控制技术实验二Word格式文档下载.docx

《计算机控制技术实验二Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《计算机控制技术实验二Word格式文档下载.docx(16页珍藏版)》请在冰豆网上搜索。

计算机控制技术实验二Word格式文档下载.docx

电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

5、静转矩:

电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。

此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

(二)步进电机动态指标及术语

1、步距角精度:

步进电机每转过一个步距角的实际值与理论值的误差。

用百分比表示:

误差/步距角*100%。

不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在

2、失步:

电机运转时运转的步数,不等于理论上的步数。

称之为失步

3、失调角:

转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4、最大空载起动频率:

电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:

电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6、运行矩频特性:

电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

 

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7、电机的共振点:

步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8、电机正反转控制:

当电机绕组通电时序为A-AB-B-BC-C-CD-D-DA时为正转,通电时序为DA-D-CD-C-BC-B-AB-A时为反转。

步进电机的特征如下:

1、一般步进电机的精度为步进角的3%-5%,且不积累。

2、步进电机外表允许的最高温度。

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;

一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3、步进电机的力矩会随转速的升高而下降。

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;

频率越高,反向电动势越大。

在它的作用下,电机随频率(或速度)的增大而相电流减少,从而导致力矩下降。

4、步进电机低速时可以正常转动,但若高于一定速度就无法启动,并伴有啸叫声。

步进电机有一个技术参数:

空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。

在有负载的情况下,启动频率应更低。

如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。

伴随着不同数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。

(三)步进电机的工作原理

步进电机的工作就是步进转动,其功用是将脉冲电信号变换为相应的角位移或是直线位移,就是给一个脉冲信号,电动机转动一个角度或是前进一步。

步进电机的角位移量与脉冲数成正比,它的转速与脉冲频率(f)成正比,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

如下所示的步进电机为一四相步进电机,采用单极性直流电源供电。

只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。

图1是该四相反应式步进电机工作原理示意图。

图1-1 

四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。

而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。

依次类推,A、B、C、D

四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图1-2所示:

图1-2步进电机工作时序波形图

(四)步进电机的分类与选择

现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

反应式步进电动机采用高导磁材料构成齿状转子和定子,其结构简单,生产成本低,步距角可以做的相当小,一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。

反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩,但动态性能相对较差。

永磁式步进电机转子采用多磁极的圆筒形的永磁铁,在其外侧配置齿状定子。

用转子和定子之间的吸引和排斥力产生转动,它的出力大,动态性能好,但步距角一般比较大。

一般为两相,转矩和体积较小,步进角一般为7.5度或15度。

混合式步进电机是指混合了永磁式和反应式的优点。

它又分为两相和五相:

两相步进角一般为1.8度而五相步进角一般为0.72度。

这种步进电机的应用最为广泛,它是PM和VR的复合产品,其转子采用齿状的稀土永磁材料,定子则为齿状的突起结构。

此类电机综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机,在计算机相关的设备中多用此类电机。

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。

一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。

电机的步距角应等于或小于此角度。

目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度 

(三相电机)等。

2、静力矩的选择

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。

静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。

单一的惯性负载和单一的摩擦负载是不存在的。

直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。

一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)。

3、电流的选择

静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)。

4、力矩与功率换算

步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:

P= 

Ω·

Ω=2π·

n/60 

P=2πnM/60

其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·

P=2πfM/400(半步工作)

其中f为每秒脉冲数(简称PPS)

(五)步进电机驱动系统介绍

步进电机不能直接接到交直流电源上工作,而必须使用专用设备——步进电机驱动器.步进电机驱动系统的性能,除与电机本身的性能有关外,也在很大程度上取决于驱动器的优劣。

典型的步进电机驱动系统是由步进电机控制器、步进电机驱动器和步进电机本体三部分组成。

步进电机控制器发出步进脉冲和方向信号,每发一个脉冲,步进电机驱动器驱动步进电机转子旋转一个步距角,即步进一步。

步进电机转速的高低、升速或降速、启动或停止都完全取决于脉冲的有无或频率的高低。

控制器的方向信号决定步进电机的顺时针或逆时针旋转。

通常,步进电机驱动器由逻辑控制电路、功率驱动电路、保护电路和电源组成。

步进电机驱动器一旦接收到来自控制器的方向信号和步进脉冲,控制电路就按预先设定的电机通电方式产生步进电机各相励磁绕组导通或截止信号。

控制电路输出的信号功率很低,不能提供步进电机所需的输出功率,必须进行功率放大,这就是步进电机驱动器的功率驱动部分。

功率驱动电路向步进电机控制绕组输入电流,使其励磁形成空间旋转磁场,驱动转子运动。

保护电路在出现短路、过载、过热等故障时迅速停止驱动器和电机的运行。

步进电机各相绕组都是在铁心上的铜线圈,电阻和电感是电机相绕组的两个固有属性,电机的性能和这两个因素密切相关。

绕组通电时,电感使绕组电流上升速度受到限制,因此影响电机绕组电流的大小。

绕组线圈的电阻是电机温升和电能损耗的主要因素。

图1-3(a)电感-电阻串联电路及其电流波形

图1-3(b)电感-电阻串联电路及其电流波形

步进电机的相绕组可以等效为一个电感一电阻串联电路。

图1-3表明了一个电感一电阻电路的电气特性。

在t=0时刻,电压V施加到该电路上时,电路中的电流变化规律为:

I(t)=V(1-e-Rt/L)/R

通电瞬间绕组电流上升速率为:

di(0)/dt=V/t

经过一段时间,电流达到最大值:

Imax=V/R

L/R定义为该电路的时间常数,是电路中的电流达到最大电流Imax的63%所需要的时间。

在t=t:

时刻,电路断开与直流电压源V的连接,并且短路,电路中的电流以初始速率一V/L开始下降,电流变化规律为:

I(t)=Ve-R(t-t1)/L/R

不同频率的矩形波电压施加到该电路上,电流波形如图2-2所示。

低频时电流能够达到最大值(a);

当矩形波频率上升达到某一临界频率,电流刚达到最大值就开始下降((b):

矩形波频率超过此临界值后,绕组中的电流不能达到最大值(c)。

因为步进电机转矩的大小与绕组的电流成正比,所以电机低速运行时,电机能够达到其额定转矩,而在某一特定频率以上运行时,绕组电流随着频率的提高逐渐下降,电机转矩也相应逐渐减小,从而降低了高速运转时带负载能力。

图1-4不同频率脉冲作用下电感-电阻电路的电流波形

要改善电机高速运行时的性能,有两种办法:

提高电流上升速度VA和减小时间常数L/R;

可以通过加大绕组的电压从而增加电流上升的速率得时间常数。

或者在电路中串联电阻,使L/R减少。

二、单片机控制系统

1、系统整图

系统整图如图2-1所示,本系统采用外部中断方式,p0口作为信号的输入部分,p1口为发光二极管显示部分,p2口作为电机的驱动部分。

图2-1系统整图

2、电源部分

利用LM7812和LM7805芯片得到12V和5V的电压,它们的应用要注意以下几点:

(1)输入输出压差不能太大,太大则转换效率急速降低,而且容易击穿损坏;

(2)输出电流不能太大,1.5A是其极限值。

大电流的输出,散热片的尺寸要足够大,否则会导致高温保护或热击穿;

(3)输入输出压差也不能太小,大小效率很差。

其中12V电压给步进电机供电,5V电压则给单片机供电。

分别如图2-2、图2-3所示。

(1)、产生12V的电压给步进电机供电

图2-212V电路部分

(2)产生5V的电压给单片机供电

图2-35V电路部分

3、按键部分

本次设计选用的是单片机的P0口来控制信号的输入,所以把按键开关和P0口连接起来,当按下开关S1时,相当于给P0.0口一个低电平;

当按下开关S2时,相当于给P0.1口一个低电平;

当按下开关S3时,相当于给P0.2口一个低电平;

当按下开关S4时,相当于给P0.3口一个低电平;

当按下开关S5时,相当于给P0.4口一个低电平。

然后通过单片机实行相应的操作。

如图2-4。

图2-4按键部分电路

4、驱动部分

此电路是步进电机的驱动部分,我选用的是ULN2004芯片来驱动的,ULN2004系列是一款高耐压,大电流达林顿管驱动器,包含7个NPN达林顿管。

如图2-5。

图2-5驱动部分电路

另外,根据实际需求,添加状态指示部分和时钟部分等,完善电路。

最后根据要求编制系统软件,实现步进电机的驱动。

三、实验内容

1.用Proteus设计一四相六线步进电视控制电路。

要求利用P1口作步进电机的控制端口,通过达林顿阵列ULN2003A驱动步进电机。

2.编写程序,实现步进电机的正反转控制。

正反转时间分别持续10S时间,如此循环。

3.设计一可调速步进电机控制电路。

P3.0~P3.2分别接案件K1~K3,其中K1为正反转控制按键,K2为加速按键,K3为减速按键,要求速度7档(1~7)可调,加减速各设3档,复位时位于4档,要求每档速度变化明显。

该步进电机控制电路在以上电路的基础上自行修改。

四、实验步骤

1.用Proteus设计四相六线步进电机控制电路;

2.在KeilC51中编写步进电机正反转控制程序,编译通过后,与Proteus联合测试;

3.启动仿真,观察步进电机转动是否正常

4.用Proteus设计可调速步进电机控制电路,仿真调试、运行程序并查看效果。

五、实验程序

程序1

#include"

reg52.h"

voiddelay(unsignedintt);

//Motor

sbitF1=P1^0;

sbitF2=P1^1;

sbitF3=P1^2;

sbitF4=P1^3;

unsignedcharcodeFFZ[8]={0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1};

//正转

unsignedintK;

voidmotor_ffw()

{

unsignedchari;

unsignedintj;

for(j=0;

j<

12;

j++)//转1*n圈

for(i=0;

i<

8;

i++)//一个周期转30度

if(K==2)P1=FFZ[i]&

0x1f;

//取数据

delay(100);

//调节转速

}

}

voiddelay(unsignedintt)

{

unsignedintk;

while(t--)

{

for(k=0;

k<

80;

k++)

{}

}

main()

while

(1)

K=2;

motor_ffw();

程序2

unsignedcharcodeFFW[8]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9};

//反转

if(K==1)P1=FFW[i]&

K=1;

程序3

voidtiao();

unsignedchara,b,c;

/**********************************************************************

**

*步进电机驱动*

***********************************************************************/

b=P3&

0x07;

if(b==0x03){if(K==2)K=1;

elseK=2;

if(b==0x05)c++;

if(b==0x06)c--;

if(c==0x00)c=1;

if(c==0x08)c=7;

a=c*35;

delay(a);

/******************************************************

*

*延时程序

********************************************************/

//voidtiao()

//{

//b=0x07&

P3;

//switch(b)

//case1:

a=200;

break;

//case2:

a=100;

//case5:

a=20;

//case6:

a=10;

//}

//

c=4;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1