北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx

上传人:b****4 文档编号:16897341 上传时间:2022-11-27 格式:DOCX 页数:13 大小:76.06KB
下载 相关 举报
北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx_第1页
第1页 / 共13页
北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx_第2页
第2页 / 共13页
北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx_第3页
第3页 / 共13页
北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx_第4页
第4页 / 共13页
北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx

《北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx》由会员分享,可在线阅读,更多相关《北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx(13页珍藏版)》请在冰豆网上搜索。

北京市初三数学一模试题分类汇编尺规作图题Word文档格式.docx

∴AD⊥BC.

∴AE就是BC边上的高线.

 

(门头沟)19.下面是小明同学设计的“作圆的内接正方形”的尺规作图的过程.

如图1,⊙O.

正方形ABCD,使正方形ABCD内接于⊙O.

图1

如图2,

图2

①过点O作直线AC,交⊙O于点A和C;

②作线段AC的垂直平分线MN,交⊙O于点B和D;

③顺次连接AB,BC,CD和DA;

则正方形ABCD就是所求作的图形.

根据上述作图过程,回答问题:

(1)用直尺和圆规,补全图2中的图形;

(2)完成下面的证明:

∵AC是⊙O的直径,

∴∠ABC=∠ADC=°

又∵点B在线段AC的垂直平分线上,

∴AB=BC,

∴∠BAC=∠BCA=°

同理∠DAC=45°

∴∠BAD=∠BAC+∠DAC=45°

+45°

=90°

∴∠DAB=∠ABC=∠ADC=90°

∴四边形ABCD是矩形( )(填依据),

又∵AB=BC,

∴四边形ABCD是正方形.

(密云)17.下面是小明设计的“已知底和底边上的高作等腰三角形”的尺规作图过程.

如图1,已知线段a和线段b.

等腰三角形ABC,使得AC=BC,AB=a,CD⊥AB于D,CD=b.

①如图2,作射线AM,在AM上截取AB=a;

②分别以A、B为圆心,大于

长为半径作弧,两弧交于E、F两点;

③连结EF,EF交AB与点D;

④以点D为圆心,以b为半径作弧交射线DE于点C.

⑤连结AC,BC.

所以,

为所求作三角形.

(1)使用直尺和圆规,补全图形(保留痕迹);

(2)完成下面的证明.

AE=BE=AF=BF,

四边形AEBF为______________.

AB与EF交于点D,

EF⊥AB,AD=________.

点C在EF上,

BC=AC(填写理由:

______________________________________)

(平谷)17.下面是小元设计的“作已知角的角平分线”的尺规作图过程.

如图,∠AOB.

∠AOB的角平分线OP.

①在射线OA上任取点C;

②作∠ACD=∠AOB;

③以点C为圆心CO长为半径画圆,交射线CD于点P;

④作射线OP;

所以射线OP即为所求.

根据小元设计的尺规作图过程,完成以下任务.

(1)补全图形;

∵∠ACD=∠AOB,

∴CD∥OB(____________)(填推理的依据).

∴∠BOP=∠CPO.

又∵OC=CP,

∴∠COP=∠CPO(____________)(填推理的依据).

∴∠COP=∠BOP.

∴OP平分∠AOB.

(石景山)17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.

如图1,直线l及直线l外一点A.

直线AD,使得AD∥l.

①在直线l上任取一点B,连接AB;

②以点B为圆心,AB长为半径画弧,

交直线l于点C;

③分别以点A,C为圆心,AB长为半径

画弧,两弧交于点D(不与点B重合);

④作直线AD.

所以直线AD就是所求作的直线.

根据小立设计的尺规作图过程,

(2)完成下面的证明.(说明:

括号里填推理的依据)

连接CD.

∵AD=CD=BC=AB,

∴四边形ABCD是().

∴AD∥l().

(通州)19.已知:

如图1,在△ABC中,∠ACB=90°

.

射线CG,使得CG∥AB.

图1图2

下面是小东设计的尺规作图过程.

如,2,

①以点A为圆心,适当长为半径作弧,分别交AC,AB于D,E两点;

②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;

③以点F为圆心,DE长为半径作弧,两弧在∠FCB内部交于点G;

④作射线CG.所以射线CG就是所求作的射线.

根据小东设计的尺规作图过程,

(2)完成下面的证明.

连接FG、DE.

∵△ADE≌△_________,

∴∠DAE=∠_________.

∴CG∥AB(__________________________)(填推理的依据).

(延庆)17.下面是小东设计的“已知两线段,求作直角三角形”的尺规作图过程.

线段a及线段b(

).

Rt△ABC,使得a,b分别为它的直角边和斜边.

①作射线

,在

上顺次截取

②分别以点

为圆心,以b的长为半径画弧,两弧交于点

③连接

.则△ABC就是所求作的直角三角形.

  根据小东设计的尺规作图过程,

  

(1)补全图形,保留作图痕迹;

  证明:

连接AD

∵ =AD,CB= ,

( )(填推理的依据).

(燕山)19.下面是“过直线外一点作已知直线的垂线”的尺规作图过程.

直线l及直线l外一点P.

直线PQ,使得PQ⊥l,垂足为Q.

①在直线l上任取一点A;

②以点P为圆心,PA为半径作圆,交直线l于点B;

③分别以点A,B为圆心,大于

AB的长为半径画弧,

两弧相交于点C;

④连接PC交直线l于点Q.

则直线PQ就是所求作的垂线.

根据上述尺规作图过程,

(1)使用直尺和圆规,补全图形;

(2)完成下面的证明:

∵PA=,AC=,

∴PQ⊥l.()(填推理的依据)

(西城)19.下面是小东设计的“作圆的一个内接矩形,并使其对角线的夹角为60°

”的尺规作图过程.

⊙O.

矩形ABCD,使得矩形ABCD内接于⊙O,且其对角线AC,BD的夹角为60°

①作⊙O的直径AC;

②以点A为圆心,AO长为半径画弧,交直线AC上方的圆弧于点B;

③连接BO并延长交⊙O于点D;

④连接AB,BC,CD,DA.

所以四边形ABCD就是所求作的矩形

(1)使用直尺和圆规,补全图形(保留作图痕迹);

(2)完成下面的证明

∵点A,C都在⊙O上,

∴OA=OC.

同理OB=OD.

∴四边形ABCD是平行四边形.

∵AC是⊙O的直径,

∴∠ABC=90°

()(填推理的依据).

∴四边形ABCD是矩形.

∵AB==BO,

∴∠AOB=60°

∴四边形ABCD是所求作的矩形.

(顺义)19.下面是小明同学设计的“过直线外一点作这条直线的垂线”的尺规作图过程.

直线l及直线l外一点P.

直线PQ,使得PQ⊥l.

1在直线l上取一点A,以点P为圆心,PA长为半径画弧,与直线l交于另一点B;

2分别以A,B为圆心,PA长为半径在直线l下方画弧,两弧交于点Q;

3作直线PQ.

所以直线PQ为所求作的直线.

连接PA,PB,QA,QB.

∵PA=PB=QA=QB,

∴四边形APBQ是菱形()(填推理的依据).

∴PQ⊥AB()(填推理的依据).

即PQ⊥l.

(丰台)17.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.

直线l及直线l上一点A.

直线AB,使得AB⊥l.

①以点A为圆心,任意长为半径画弧,交直线l于C,D两点;

②分别以点C和点D为圆心,大于

CD长为半径画弧,

两弧在直线l一侧相交于点B;

③作直线AB.

所以直线AB就是所求作的垂线.

∵AC= 

,BC= 

∴AB⊥l().(填推理的依据).

(东城)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.

如图,直线BC及直线BC外一点P.

直线PE,使得PE∥BC.

①在直线BC上取一点A,连接PA;

②作∠PAC的平分线AD;

③以点P为圆心,PA长为半径画弧,交射线AD于点E;

④作直线PE.

所以直线PE就是所求作的直线.

∵AD平分∠PAC,

∴∠PAD=∠CAD.

∵PA=PE,

∴∠PAD=________.

∴∠PEA=________.

∴PE∥BC.(____________________________________________________)(填推理的依据)

(海淀)19.下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.

直线PQ,使PQ∥l.

①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;

②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;

③作直线PQ.

所以直线PQ就是所求作的直线.

连接PB,QB,

∵PA=QB,

_____,

∴∠PBA=∠QPB(____________________)(填推理的依据),

∴PQ∥l(____________________)(填推理的依据).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1