自动变速器基础知识Word格式.docx

上传人:b****6 文档编号:16826378 上传时间:2022-11-26 格式:DOCX 页数:26 大小:467.62KB
下载 相关 举报
自动变速器基础知识Word格式.docx_第1页
第1页 / 共26页
自动变速器基础知识Word格式.docx_第2页
第2页 / 共26页
自动变速器基础知识Word格式.docx_第3页
第3页 / 共26页
自动变速器基础知识Word格式.docx_第4页
第4页 / 共26页
自动变速器基础知识Word格式.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

自动变速器基础知识Word格式.docx

《自动变速器基础知识Word格式.docx》由会员分享,可在线阅读,更多相关《自动变速器基础知识Word格式.docx(26页珍藏版)》请在冰豆网上搜索。

自动变速器基础知识Word格式.docx

油泵是自动变速器最重要的总成之一,它通常安装在变矩器的后方,由变矩器壳后端的轴套驱动。

在发动机运转时,不论汽车是否行驶,油泵都在运转,为自动变速器中的变矩器、换挡执行机构、自动换挡控制系统部分提供一定油压的液压油。

油压的调节由调压阀来实现。

4、自动换挡控制系统

自动换挡控制系统能根据发动机的负荷(节气门开度)和汽车的行驶速度,按照设定的换挡规律,自动地接通或切断某些换挡离合器和制动器的供油油路,使离合器结合或分开、制动器制动或释放,以改变齿轮变速器的传动化,从而实现自动换挡。

自动变速器的自动换挡控制系统有液压控制和电液压(电子)控制两种。

液压控制系统是由阀体和各种控制阀及油路所组成的,阀门和油路设置在一个板块内,称为阀体总成。

不同型号的自动变速器阀体总成的安装位置有所不同,有的装置于上部,有的装置于侧面,纵置的自动变速器一般装置于下部。

在液压控制系统中,增设控制某些液压油路的电磁阀,就成了电器控制的换挡控制系统,若这些电磁阀是由电子计算机控制的,则成为电子控制的换挡系统。

5、换挡操纵机构

自动变速器的换挡操纵机构包括手动选择阀的操纵机构和节气门阀的操纵机构等。

驾驶员通过自动变速器的操纵手柄改变阀板内的手动阀位置,控制系统根据手动阀的位置及节气门开度、车速、控制开关的状态等因素,利用液压自动控制原理或电子自动控制原理,按照一定的规律控制齿轮变速器中的换挡执行机构的工作,实现自动换挡。

二、自动变速器的工作过程

自动变速器之所以能够实现自动换挡是因为工作中驾驶员踏下油门的位置或发动机进气歧管的真空度和汽车的行驶速度能指挥自动换挡系统工作,自动换挡系统中各控制阀不同的工作状态将控制变速齿轮机构中离合器的分离与结合和制动器的制动与释放,并改变变速齿轮机构的动力传递路线,实现变速器挡位的变换。

传统的液力自动变速器根据汽车的行驶速度和节气门开度的变化,自动变速挡位。

其换挡控制方式是通过机械方式将车速和节气门开度信号转换成控制油压,并将该油压加到换挡阀的两端,以控制换挡阀的位置,从而改变换挡执行元件(离合器和制动器)的油路。

这样,工作液压油进入相应的执行元件,使离合器结合或分离,制动器制动或松开,控制行星齿轮变速器的升挡或降挡,从而实现自动变速。

电控液力自动变速器是在液力自动变速器基础上增设电子控制系统而形成的。

它通过传感器和开关监测汽车和发动机的运行状态,接受驾驶员的指令,并将所获得的信息转换成电信号输入到电控单元。

电控单元根据这些信号,通过电磁阀控制液压控制装置的换挡阀,使其打开或关闭通往换挡离合器和制动器的油路,从而控制换挡时刻和挡位的变换,以实现自动变速。

其工作过程如图1-1所示。

图1-1电控液力自动变速器的工作过程示意图

1-节气门位置传感器2-液力变矩器3-行星齿轮变速器4-车速传感器5-液压控制装置6-换挡阀7-电磁阀

三、自动变速器的类型

不同车型所装用的自动变速器在型式、结构上往往有很大的差异,常见的分类方法和类型如下:

1、按变速方式分类

汽车自动变速器按变速方式的不同,可分为有级变速器和无级变速器两种。

有级变速器是具有有限几个定值传动比(一般有3~5个前进挡和一个倒挡)的变速器。

无级变速器是能使传动比在一定范围内连续变化的变速器,无级变速器目前在汽车上应用较少。

2、按汽车驱动方式分类

自动变速器按照汽车驱动方式的不同,可分为后驱动自动变速器和前驱动自动变速器两种。

这两种自动变速器在结构和布置上有很大的不同。

后驱动自动变速器的变矩器和齿轮变速器的输入轴及输出轴在同一轴线上,发动机的动力经变矩器、自动变速器、传动轴、后驱动桥的主减速器、差速器和半轴传给左右两个后轮。

这种发动机前置,后轮驱动的布置型式,其发动机和自动变速器都是纵置的,因此轴向尺寸较大,在小型客车上布置比较困难。

后驱动自动变速器的阀板总成一般布置在齿轮变速器下方的油底壳内。

前驱动自动变速器除了具有与后驱动自动变速器相同的组成部分外,在自动变速器的壳体内还装有差速器。

前驱动汽车的发动机有纵置和横置两种。

纵置发动机的前驱动自动变速器的结构和布置与后驱动自动变速器基本相同,只是在后端增加了一个差速器。

横置发动机前驱动自动变速器由于汽车横向尺寸的限制,要求有较小的轴向尺寸,因此通常将输入轴和输出轴设计成两个轴线的方式;

变矩器和齿轮变速器输入轴布置在上方,输出轴布置在下方。

这样的布置减少了变速器总体的轴向尺寸,但增加了变速器的高度,因此常将阀板总成布置在变速器的侧面或上方,以保证汽车有足够的最小离地间隙。

3、按自动变速器前进挡的挡位数不同分类

自动变速器按前进挡的档位数不同,可分为2个前进挡、3个前进挡、4个前进挡三种。

早期的自动变速器通常为2个前进挡或3个前进挡。

这两种自动变速器都没有超速挡,其最高挡为直接挡。

新型轿车装用的自动变速器基本上都是4个前进挡,即设有超速挡。

这种设计虽然使自动变速器的构造更加复杂,但由于设有超速挡,大大改善了汽车的燃油经济性。

4、按齿轮变速器的类型分类

自动变速器按齿轮变速器的类型不同,可分为普通齿轮式和行星齿轮式两种。

普通齿轮式自动变速器体积较大,最大传动比较小,使用较少。

行星齿轮式自动变速器结构紧凑,能获得较大的传动比,为绝大多数轿车采用。

5、按变矩器的类型分类

轿车自动变速器基本上都是采用结构简单的单级三元件综合式液力变矩器。

这种变矩器又分为有锁止离合器和无锁止离合器两种。

早期的变矩器中没有锁止离合器,在任何工况下都是以液力的方式传递发动机动力,因此传动效率较低。

新型轿车自动变速器大都采用带锁止离合器的变矩器,这样当汽车达到一定车速时,控制系统使锁止离合器结合,液力变矩器输入部分和输出部分连成一体,发动机动力以机械传递的方式直接传入齿轮变速器,从而提高了传动效率,降低了汽车的燃油消耗量。

6、按控制方式分类

自动变速器按控制方式不同,可分为液力控制自动变速器和电子控制自动变速器两种。

液力控制自动变速器是通过机械的手段,将汽车行驶时的车速及节气门开度两个参数转变为液压控制信号;

阀板中的各个控制阀根据这些液压控制信号的大小,按照设定的换挡规律,通过控制换挡执行机构动作,实现自动换挡,现在使用较少。

电子控制自动变速器是通过各种传感器,将发动机转速、节气门开度、车速、发动机水温、自动变速器液压油温度等参数转变为电信号,并输入电脑;

电脑根据这些电信号,按照设定的换挡规律,向换挡电磁阀、油压电磁阀等发出电子控制信号;

换挡电磁阀和油压电磁阀再将电脑的电子控制信号转变为液压控制信号,阀板中的各个控制阀根据这些液压控制信号,控制换挡执行机构的动作,从而实现自动换挡。

四、自动变速器的优缺点

机械齿轮变速器具有效率高,工作可靠,结构比较简单等优点。

故被广泛地应用在各种汽车上。

但是对于诸如高级小客车、超重型自卸汽车,要求高通过性的军用越野汽车以及城市的大型公共汽车等车型,由于特殊的使用条件和要求,单纯采用机械变速器,虽能适应汽车的一些需要,但还存在不足之处。

为适应汽车行驶条件的变化,必须经常换挡。

换挡时,被啮合的主动齿轮与被动齿轮转速不一样,使齿轮受到冲击,甚至有时挂不上挡。

于是换挡前需要对转速加以调整。

例如从高挡换至低挡,先要松油门和离合器,摘掉高挡、结合主离合器、加大油门,再分离主离合器、挂上低挡,使换挡时将要相互啮合的齿轮转速相接近,便于挂挡。

这样换挡过程过于复杂,要求司机能够掌握时机,有一定的熟练操作技术。

同时,驾驶员踩主离合器踏板时,要消耗很大的体力,容易疲劳。

由于换挡时的冲击现象,传动系要受到很大的附加作用力。

若汽车在行驶过程中,突然碰到大右块,阻力突增,车速下降。

此时发动机工况并未改变,传动系就要“别劲”,使零部件容易损坏或缩短使用寿命。

机械变速器由若干组齿轮构成。

齿轮的不同组合可得到不同的挡位。

由于齿轮组数目有限,所能得到的挡位也就有限,故普通机械变速器是有级式变速器。

机械变速器的挡位愈多,愈能更充分地利用发动机功率,以提高汽车的动力性能。

例如结构相同的两辆汽车采用不同的变速器:

一辆是两挡变速器,另一辆是四挡变速器。

两种变速器的头挡和直接挡速比相同。

此两辆汽车在良好路面上以直接挡行驶时,最大车速和克服道路阻力的能力相同。

头挡的起步能力和最大爬坡度也相同。

但在阻力稍大。

不能用直接挡行驶时,情况就不同了。

前者只能用头挡,并需关小节气门,最大行驶速度低;

后者则可用3挡或2挡行驶,允许节气门开得较大,故发动机功率利用得充分,动力性好,平均车速高,经济性也好。

事实上,机械变速器的挡位不可能增加得很多,否则将会导致结构复杂笨重。

挡位增多,换挡次数也就增多,更增加了换挡操纵的困难。

因此,载重量在25T以上的重型矿用汽车一般都不单独使用机械变速器。

采用液力自动变速器,可弥补机械变速器的某些不足。

使用液力自动变速器的汽车具有下列显著的优点:

1、大大提高发动机和传动系的使用寿命

采取液力自动变速器的汽车与采用机械变速器的汽车对比试验表明:

前者发动机的寿命可提高85%,变速器的寿命提高12倍,传动轴和驱动半轴的寿命可提高75%~100%。

液力传动汽车的发动机与传动系,由液体工作介质“软”性连接。

液力传动起一定的吸收、衰减和缓冲的作用,大大减少冲击和动载荷。

例如,当负荷突然增大时,可防止发动机过载和突然熄火。

汽车在起步、换挡或制动时,能减少发动机和传动系所承受的冲击及动载荷,因而提高了有关零部件的使用寿命。

2、提高汽车通过性

采用液力自动变速器的汽车,在起步时,驱动轮上的驱动扭矩是逐渐增加的,防止很大的振动,减少车轮的打滑,使起步容易,且更换平稳。

它的稳定车速可以降低到低。

举例来说:

当行驶阻力很大时(如爬陡坡),发动机也不至于熄火,使汽车仍能以极低速度行驶。

在特别困难面行驶时,因换挡时没有功率间断,不会出现汽车停车的现象。

因此,液力机械变速器对于提高汽车的通过性具有良好的效果。

3、具有良好的自适应性

目前,液力传动的汽车都采用液力变矩器,它能自动适应汽车驱动轮负荷的变化。

当行驶阻力增大时,汽车自动降低速度,使驱动轮动力矩增加;

当行驶阻力减小时,减小驱动力矩,增加车速。

这说明,变矩器能在一定范围内实现无级变速器,大大减少行驶过程中的换挡次数,有利于提高汽车的动力性和平均车速。

4、操纵轻便

装备液力自动变速器的汽车,采用液压操纵或电子控制,使换挡实现自动化。

在变换变速杆位置时,只需操纵液压控制的滑阀,这比普通机械变速器用拨叉拨动滑动齿轮实现换挡要简单轻松得多。

而且,它的换挡齿轮组一般都采用行星齿轮组,是常啮合齿轮组,这就降低或消除了换挡时的齿轮冲击,可以不要主离合器,大大减轻了驾驶员的劳动强度。

综上所述,液力自动变速器不仅能与汽车行驶要求相适应,而且具有单纯机械变速器所不具备的一些显著优点,这是液力自动变速器的主要方面,也是汽车采用液力自动变速器的理由。

不过,与单纯机械变速器相比,它也存在某些缺点,如结构复杂,制造成本较高,传动效率较低等。

对液力变矩器而言,最高效率一般只有(82~86)%左右,而机械传动的效率可达(95~97)%。

由于传动效率低,使汽车的燃油经济性有所降低;

由于自动变速器的结构复杂,相应的维修技术也较复杂,要求有专门的维修人员,具有较高的修理水平和故障检查分析的能力。

但这些缺点是相对的,由于大大延长了发动机和传动系统的使用寿命,提高了出车率和生产率,减少了维修费用,自动的无级变速提高了发动机功率的平均利用率,提高平均车速,虽然燃油经济性有所降低,却提高了汽车整体使用经济性。

此外,目前还采用一种带锁定离合器的液力变矩器,在一定行驶条件下,通过采用与发动机的最佳匹配,遵循最佳换挡规律,采用变矩器的锁止,可使用传动效率大为提高。

当锁定离合器分离时,仍与一般液力变矩器相同;

当锁定离合器结合时,使液力变矩器失去作用,输入轴与输出轴是直接传动的,传动效率接近百分之百。

第二节自动变速器的结构与工作原理

一、液力耦合器和液力变矩器的结构与工作原理

现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。

本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。

汽车上所采用的液力传动装置通常有液力耦合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。

(一)液力耦合器的结构与工作原理

1、液力耦合器的结构组成

液力耦合器是一种液力传动装置,又称液力联轴器。

在不考虑机械损失的情况下,输出力矩与输入力矩相等。

它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。

其结构主要由壳体、泵轮、涡轮三个部分组成,如图1-2所示。

图1-2液力耦合器的基本构造

1-输入轴2-泵轮叶轮3-涡轮叶轮4-轮出轴

液力耦合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力耦合器的主动部分:

涡轮和输出轴连接在一起,是液力耦合器的从动部分。

泵轮和涡轮相对安装,统称为工作轮。

在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。

两者之间有一定的间隙(约3mm~4mm);

泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。

2、液力耦合器的工作原理

当发动机运转时,曲轴带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;

冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。

液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。

液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;

而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。

液力耦合器要实现传动,必须在泵轮和涡轮之间有油液的循环流动。

而油液循环流动的产生,是由于泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差所致。

如果泵轮和涡轮的转速相等,则液力耦合器不起传动作用。

因此,液力耦合器工作时,发动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。

由于在液力耦合器内只有泵轮和涡轮两个工作轮,液压油在循环流动的过程中,除了受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。

根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,即发动机传给泵轮的扭矩与涡轮上输出的扭矩相等,这就是液力耦合器的传动特点。

液力耦合器在实际工作中的情形是:

汽车起步前,变速器挂上一定的挡位,起动发动机驱动泵轮旋转,而与整车连接着的涡轮即受到力矩的作用,但因其力矩不足于克服汽车的起步阻力矩,所以涡轮还不会随泵轮的转动而转动。

加大节气门开度,使发动机的转速提高,作用在涡轮上的力矩随之增大,当发动机转速增大到一定数值时,作用在涡轮上的力矩足以使汽车克服起步阻力而起步。

随着发动机转速的继续增高,涡轮随着汽车的加速而不断加速,涡轮与泵轮转速差的数值逐渐减少。

在汽车从起步开始逐步加速的过程中,液力耦合器的工作状况也在不断变化,这可用如图1-3所示的速度矢量图来说明。

假定油液螺旋循环流动的流速VT保持恒定,VL为泵轮和涡轮的相对线速度,VE为泵轮出口速度,VR为油液的合成速度。

图1-3涡轮处于不同转速时的液流情况

(a)涡轮不动(b)中速(c)高速

当车辆即将要起步时,泵轮在发动机驱动下转动而涡轮静止不动。

由于涡轮没有运动,泵轮与涡轮间的相对速度VL将达最大值,由此而得到的合成速度,即油液从泵轮进入涡轮的速度VR也是最大的。

油液进入涡轮的方向和泵轮出口速度之间的夹角θ1也较小,这样液流对涡轮叶片产生的推力也就较大。

当涡轮开始旋转并逐步赶上泵轮的转速时,泵轮与涡轮间的相对线速度减小,使合成速度VR减小,并使VR和泵轮出口线速度VE之间的夹角增大。

这样液流对涡轮叶片的冲击力及由此力产生的承受扭矩的能力减小,不过随着汽车速度的增加,需要的驱动力矩也迅速降低。

当涡轮高速转动,即输出和输入的转速接近相同时,相对速度VL和合成速度VR都很小,而合成速度VR与泵轮出口速度VE间的夹角很大,这就使液流对涡轮叶片的推力变得很小,这将使输出元件滑动,直到有足够的循环油液对涡轮产生足够的冲击力为止。

由此可见,输出转速高时,输出转速赶上输入转速是一个连续不断的趋势,但总不会等于输入转速。

除非在工作状况反过来,变速器变成主动件,发动机变成被动件,涡轮的转速才会等于或高于泵轮转速。

这种情况在下坡时可能会发生。

(二)液力变矩器的结构与工作原理

液力变矩器是液力传动中的又一种型式,是构成液力自动变速器不可缺少的重要组成部分之一。

它装置在发动机的飞轮上,其作用是将发动机的动力传递给自动变速器中的齿轮机构,并具有一定的自动变速功能。

自动变速器的传动效率主要取决于变矩器的结构和性能。

常用液力变矩器的型式有一般型式的液力变矩器、综合式液力变矩器和锁止式液力变矩器。

其中综合式液力变矩器的应用较为广泛。

1、一般型式液力变矩器的结构与工作原理

液力变矩器的结构与液力耦合器相似,它有3个工作轮即泵轮、涡轮和异轮。

泵轮和涡轮的构造与液力耦合器基本相同;

导轮则位于泵轮和涡轮之间,并与泵轮和涡轮保持一定的轴向间隙,通过导轮固定套固定于变速器壳体上(图1-4)。

图1-4液力变矩器

1-飞轮2-涡轮3-泵轮4-导轮5-变矩器输出轴6-曲轴7-导轮固定套

发动机运转时带动液力变矩器的壳体和泵轮与之一同旋转,泵轮内的液压油在离心力的作用下,由泵轮叶片外缘冲向涡轮,并沿涡轮叶片流向导轮,再经导轮叶片内缘,形成循环的液流。

导轮的作用是改变涡轮上的输出扭矩。

由于从涡轮叶片下缘流向导轮的液压油仍有相当大的冲击力,只要将泵轮、涡轮和导轮的叶片设计成一定的形状和角度,就可以利用上述冲击力来提高涡轮的输出扭矩。

为说明这一原理,可以假想地将液力变矩器的3个工作轮叶片从循环流动的液流中心线处剖开并展平,得到图1-5所示的叶片展开示意图;

并假设在液力变矩器工作中,发动机转速和负荷都不变,即液力变矩器泵轮的转速np和扭矩Mp为常数。

在汽车起步之前,涡轮转速为0,发动机通过液力变矩器壳体带动泵轮转动,并对液压油产生一个大小为Mp的扭矩,该扭矩即为液力变矩器的输入扭矩。

液压油在泵轮叶片的推动下,以一定的速度,按图1-5(b)中箭头1所示方向冲向涡轮上缘处的叶片,对涡轮产生冲击扭矩,该扭矩即为液力变矩器的输出扭矩。

此时涡轮静止不动,冲向涡轮的液压油沿叶片流向涡轮下缘,在涡轮下缘以一定的速度,沿着与涡轮下缘出口处叶片相同的方向冲向导轮,对导轮也产生一个冲击力矩,并沿固定不动的导轮叶片流回泵轮。

当液压油对涡轮和导轮产生冲击扭矩时,涡轮和导轮也对液压油产生一个与冲击扭矩大小相等、方向相反的反作用扭矩Mt和Ms,其中Mt的方向与Mp的方向相反,而Ms的方向与Mp的方向相同。

根据液压油受力平衡原理,可得:

Mt=Mp+Ms。

由于涡轮对液压油的反作用,扭矩Mt与液压油对涡轮的冲击扭矩(即变矩器的输出扭矩)大小相等,方向相反,因此可知,液力变矩器的输出扭矩在数值上等于输入扭矩与导轮对液压油的反作用扭矩之和。

显然这一扭矩要大于输入扭矩,即液力变矩器具有增大扭矩的作用。

液力变矩器输出扭矩增大的部分即为固定不动的导轮对循环流动的液压油的作用力矩,其数值不但取决于由涡轮冲向导轮的液流速度,也取决于液流方向与导轮叶片之间的夹角。

当液流速度不变时,叶片与液流的夹角愈大,反作用力矩亦愈大,液力变矩器的增扭作用也就愈大。

一般液力变矩器的最大输出扭矩可达输入扭矩的2.6倍左右。

图1-5液力变矩器工作原理图

A-泵轮B-涡轮C-导轮1-由泵轮冲向涡轮的液压油方向2-由涡轮冲向导轮的液压油方向3-由导轮流回泵轮的液压油方向。

当汽车在液力变矩器输出扭矩的作用下起步后,与驱动轮相连接的涡轮也开始转动,其转速随着汽车的加速不断增加。

这时由泵轮冲向涡轮的液压油除了沿着涡轮叶片流动之外,还要随着涡轮一同转动,使得由涡轮下缘出口处冲向导轮的液压油的方向发生变化,不再与涡轮出口处叶片的方向相同,而是顺着涡轮转动的方向向前偏斜了一个角度,使冲向导轮的液流方向与导轮叶片之间的夹角变小,导轮上所受到的冲击力矩也减小,液力变矩器的增扭作用亦随之减小。

车速愈高,涡轮转速愈大,冲向导轮的液压油方向与导轮叶片的夹角就愈小,液力变矩器的增扭作用亦愈小;

反之,车速愈低,液力变矩器的增扭作用就愈小。

因此,与液力耦合器相比,液力变矩器在汽车低速行驶时有较大的输出扭矩,在汽车起步,上坡或遇到较大行驶阻力时,能使驱动轮获得较大的驱动力矩。

当涡轮转速随车速的提高而增大到某一数值时,冲向导轮的液压油的方向与导轮叶片之间的夹角减小为0,这时导轮将不受液压油的冲击作用,液力变矩器失去增扭作用,其输出扭矩等于输入扭矩。

若涡轮转速进一步增大,冲向导轮的液压油方向继续向前斜,使液压油冲击在导轮叶片的背面,如图1-5(c)所示,这时导轮对液压油的反作用扭矩Ms的方向与泵轮对液压油扭矩Mp的方向相反,故此涡轮上的输出扭矩为二者之差,即Mt=Mp-Ms,液力变矩器的输出扭矩反而比输入扭矩小,其传动效率也随之减小。

当涡轮转速较低时,液力变矩器的传动效率高于液力耦合器的传动效率;

当涡轮的转速增加到某一数值时,液力变矩器的传动效率等于液力耦合器的传动效率;

当涡轮转速继续增大后,液力变矩器的传动效率将小

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1