高考物理二轮复习功能关系在力学中的Word下载.docx

上传人:b****5 文档编号:16817115 上传时间:2022-11-26 格式:DOCX 页数:11 大小:104.50KB
下载 相关 举报
高考物理二轮复习功能关系在力学中的Word下载.docx_第1页
第1页 / 共11页
高考物理二轮复习功能关系在力学中的Word下载.docx_第2页
第2页 / 共11页
高考物理二轮复习功能关系在力学中的Word下载.docx_第3页
第3页 / 共11页
高考物理二轮复习功能关系在力学中的Word下载.docx_第4页
第4页 / 共11页
高考物理二轮复习功能关系在力学中的Word下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

高考物理二轮复习功能关系在力学中的Word下载.docx

《高考物理二轮复习功能关系在力学中的Word下载.docx》由会员分享,可在线阅读,更多相关《高考物理二轮复习功能关系在力学中的Word下载.docx(11页珍藏版)》请在冰豆网上搜索。

高考物理二轮复习功能关系在力学中的Word下载.docx

(1)动能定理的适用情况:

解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;

既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.

(2)应用动能定理解题的基本思路

①选取研究对象,明确它的运动过程.

②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.

③明确物体在运动过程始、末状态的动能Ek1和Ek2.

④列出动能定理的方程W合=Ek2-Ek1,及其他必要的解题方程,进行求解.

2.机械能守恒定律的应用

(1)机械能是否守恒的判断

①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.

②用能量转化来判断,看是否有机械能转化为其他形式的能.

③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.

(2)应用机械能守恒定律解题的基本思路

①选取研究对象——物体系统.

②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.

③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.

④根据机械能守恒定律列方程,进行求解.

 

题型1 力学中的几个重要功能关系的应用

例1

 如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是(  )

图1

A.B物体的机械能一直减小

B.B物体的动能的增加量等于它所受重力与拉力做的功之和

C.B物体机械能的减少量等于弹簧的弹性势能的增加量

D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量

 (2013·

山东·

16)如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>

m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中(  )

图2

A.两滑块组成的系统机械能守恒

B.重力对M做的功等于M动能的增加

C.轻绳对m做的功等于m机械能的增加

D.两滑块组成系统的机械能损失等于M克服摩擦力做的功

题型2 动力学方法和动能定理的综合应用

例2

 (15分)如图3所示,上表面光滑、长度为3m、质量M=10kg的木板,在F=50N的水平拉力作用下,以v0=5m/s的速度沿水平地面向右匀速运动.现将一个质量为m=3kg的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L=1m时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1m就在其最右端无初速度地放上一个同样的小铁块.(g取10m/s2)求:

图3

(1)木板与地面间的动摩擦因数;

(2)刚放第三个小铁块时木板的速度;

(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.

 如图4所示,倾角为37°

的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10m/s2,sin37°

=0.6,cos37°

=0.8.

图4

(1)求滑块与斜面间的动摩擦因数μ;

(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;

(3)若滑块离开C点的速度大小为4m/s,求滑块从C点飞出至落到斜面上所经历的时间t.

题型3 动力学方法和机械能守恒定律的应用

例3

 (14分)如图5,质量为M=2kg的顶部有竖直壁的容器A,置于倾角为θ=30°

的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器内有质量为m=1kg的光滑小球B与右壁接触.让A、B系统从斜面上端由静止开始下滑L后刚好到达斜面底端,已知L=2m,取重力加速度g=10m/s2.求:

图5

(1)小球到达斜面底端的速度大小;

(2)下滑过程中,A的水平顶面对B的支持力大小;

(3)下滑过程中,A对B所做的功.

 如图6所示,轮半径r=10cm的传送带,水平部分AB的长度L=1.5m,与一圆心在O点、半径R=1m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25m,一质量m=0.1kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°

.已知sin37°

=0.8,g=10m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.

图6

(1)求滑块对圆轨道末端的压力;

(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;

(3)若传送带以v0=0.5m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能.

题型4.综合应用动力学和能量观点分析多过程问题

例4(12分)如图7所示,半径为R的光滑半圆轨道ABC与倾角为θ=37°

的粗糙斜面轨道DC相切于C点,半圆轨道的直径AC与斜面垂直.质量为m的小球从A点左上方距A点高为h的斜面上方P点以某一速度v0水平抛出,刚好与半圆轨道的A点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D点.已知当地的重力加速度为g,取R=

h,sin37°

=0.8,不计空气阻力,求:

图7

(1)小球被抛出时的速度v0;

(2)小球到达半圆轨道最低点B时,对轨道的压力大小;

(3)小球从C到D过程中摩擦力做的功Wf.

 如图8所示,将一质量m=0.1kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°

的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2m,斜面高H=15m,竖直圆轨道半径R=5m.取sin53°

=0.8,cos53°

=0.6,g=10m/s2,试求:

图8

(1)小球水平抛出的初速度v0及斜面顶端与平台边缘的水平距离x;

(2)小球从平台顶端O点抛出至落到斜面底端B点所用的时间;

(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D时对轨道的压力.

一、单项选择题(45分钟)

1.(2013·

安徽·

17)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为Ep=-

,其中G为引力常量,M为地球质量,该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为(  )

A.GMm

B.GMm

C.

D.

2.如图1所示,质量为m的物体(可视为质点)以某一初速度从A点冲上倾角为30°

的固定斜面,其运动的加速度大小为

g,沿斜面上升的最大高度为h,则物体沿斜面上升的过程中(  )

图1

A.物体的重力势能增加了

mgh

B.物体的重力势能增加了mgh

C.物体的机械能损失了

D.物体的动能减少了mgh

3.用电梯将货物从六楼送到一楼的过程中,货物的v-t图象如图2所示.下列说法正确的是(  )

A.前2s内货物处于超重状态

B.最后1s内货物只受重力作用

C.货物在10s内的平均速度是1.7m/s

D.货物在2s~9s内机械能守恒

4.质量为m的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中OA段为直线,AB段为曲线,B点后为平行于横轴的直线.已知从t1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为Ff,以下说法正确的是(  )

A.0~t1时间内,汽车牵引力的数值为m

B.t1~t2时间内,汽车的功率等于(m

+Ff)v2

C.t1~t2时间内,汽车的平均速率小于

D.汽车运动的最大速率v2=(

+1)v1

二、多项选择题

5.(2013·

江苏·

9)如图4所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中(  )

A.物块在A点时,弹簧的弹性势能等于W-

μmga

B.物块在B点时,弹簧的弹性势能小于W-

C.经O点时,物块的动能小于W-μmga

D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能

6.一物体静止在水平地面上,在竖直向上的拉力F的作用下开始向上运动,如图5甲所示.在物体运动过程中,空气阻力不计,其机械能E与位移x的关系图象如图乙所示,其中曲线上点A处的切线的斜率最大.则(  )

A.在x1处物体所受拉力最大B.在x2处物体的速度最大

C.在x1~x3过程中,物体的动能先增大后减小

D.在0~x2过程中,物体的加速度先增大后减小

7.被誉为“豪小子”的纽约尼克斯队17号华裔球员林书豪在美国职业篮球(NBA)赛场上大放光彩.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m,双脚离开地面时的速度为v,从开始下蹲至跃起过程中重心上升的高度为h,则下列说法正确的是(  )

A.从地面跃起过程中,地面支持力对他所做的功为0

B.从地面跃起过程中,地面支持力对他所做的功为

mv2+mgh

C.离开地面后,他在上升过程和下落过程中都处于失重状态

D.从下蹲到离开地面上升过程中,他的机械能守恒

三、非选择题

8.水上滑梯可简化成如图6所示的模型,光滑斜槽AB和粗糙水平槽BC平滑连接,斜槽AB的竖直高度H=6.0m,倾角θ=37°

,水平槽BC长d=2.5m,BC面与水面的距离h=0.80m,人与BC间的动摩擦因数为μ=0.40.一游戏者从滑梯顶端A点无初速度地自由滑下,求:

(取重力加速度g=10m/s2,cos37°

=0.8,sin37°

=0.6)

(1)游戏者沿斜槽AB下滑时加速度的大小;

(2)游戏者滑到C点时速度的大小;

(3)在从C点滑出至落到水面的过程中,游戏者在水平方向上的位移的大小.

9.如图7所示,质量为m=1kg的小物块轻轻地放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑的圆弧轨道.B、C为圆弧轨道的两端点,其连线水平,已知圆弧轨道的半径R=1.0m,圆弧轨道对应的圆心角θ=106°

,轨道最低点为O,A点距水平面的高度h=0.8m,小物块离开C点后恰能无碰撞地沿固定斜面向上运动,0.8s后经过D点,小物块与斜面间的动摩擦因数为μ1=

.(g=10m/s2,sin37°

=0.6,cos37°

=0.8)

(1)求小物块离开A点时的水平初速度v1的大小;

(2)求小物块经过O点时对轨道的压力;

(3)假设小物块与传送带间的动摩擦因数为μ2=0.3,传送带的速度为5m/s,求P、A间的距离;

(4)求斜面上C、D间的距离.

10.如图8所示是一皮带传输装载机械示意图.井下挖掘工将矿物无初速度地放置于沿图示方向运行的传送带A端,被传输到末端B处,再沿一段圆形轨道到达轨道的最高点C处,然后水平抛到货台上.已知半径为R=0.4m的圆形轨道与传送带在B点相切,O点为半圆的圆心,BO、CO分别为圆形轨道的半径,矿物m可视为质点,传送带与水平面间的夹角θ=37°

,矿物与传送带间的动摩擦因数μ=0.8,传送带匀速运行的速率为v0=8m/s,传送带A、B点间的长度sAB=45m.若矿物落到点D处离最高点C点的水平距离为sCD=2m,竖直距离为hCD=1.25m,矿物质量m=50kg,sin37°

=0.8,g=10m/s2,不计空气阻力.求:

(1)矿物到达B点时的速度大小;

(2)矿物到达C点时对轨道的压力大小;

(3)矿物由B点到达C点的过程中,克服阻力所做的功.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1