一元一次方程应用题与答案Word格式.docx

上传人:b****4 文档编号:16610657 上传时间:2022-11-24 格式:DOCX 页数:17 大小:102.96KB
下载 相关 举报
一元一次方程应用题与答案Word格式.docx_第1页
第1页 / 共17页
一元一次方程应用题与答案Word格式.docx_第2页
第2页 / 共17页
一元一次方程应用题与答案Word格式.docx_第3页
第3页 / 共17页
一元一次方程应用题与答案Word格式.docx_第4页
第4页 / 共17页
一元一次方程应用题与答案Word格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

一元一次方程应用题与答案Word格式.docx

《一元一次方程应用题与答案Word格式.docx》由会员分享,可在线阅读,更多相关《一元一次方程应用题与答案Word格式.docx(17页珍藏版)》请在冰豆网上搜索。

一元一次方程应用题与答案Word格式.docx

(2)一个月内通话多少分钟,两种通话方式的费用相同?

(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?

应交电费是多少元?

4.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

5.小刚为书房买灯。

现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。

假设两种灯的照明效果一样,使用寿命都可以达到2800小时。

已知小刚家所在地的电价是每千瓦时0.5元。

(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。

(费用=灯的售价+电费)

(2).小刚想在这种灯中选购两盏。

假定照明时间是3000小时,使用寿命都是2800小时。

请你设计一种费用最低的选灯照明方案,并说明理由。

6.某中学暑假准备组织师生去旅游,此校教师共50名,有两家旅行社可提供选择,每家的定价相同优惠政策不同。

甲旅行社规定教师和学生一律按八折优惠,乙旅行社规定教师全免费,学生按八五折收费,经核算甲乙两家旅行社的收费完全相同,问有多少学生旅游?

7.某公园门票价格规定如下:

某年级两个班共104人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:

(1)两班各有多少学生?

(2)如果两班联合起来作为一个团体购票,可省多少钱?

(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?

购票张数

1—50张

51—100张

100张以上

每张票的价格

13元

11元

9元

8.甲乙两个公司都想社会招聘人才,两家公司招聘条件基本相同,只有薪资待遇有如下区别:

甲公司:

年薪20000元,每年加工龄工资200元;

乙公司:

半年薪10000元,每半年加工龄工资50元,从经济收入角度考虑,选择哪家公司有利?

9.为加强公民节水意识,合理利用水资源,某市采用如下水费计费方式:

用水量

单价

不超过6m3

2元/m3

超过6m3不到10m3

4元m3

超出10m3

8元m3

(1)某用户4月用水12.5m3,应收水费多少元?

(2)如果该用户3、4月份共用水15m3(4月比3月多),共交水费44元,则该用户3、4月份各用水多少m3?

10.某电力公司分时电价规则如下:

时间

收费

平段(8:

00-22:

00)

每千瓦时上浮0.03元

谷段(22:

00-次日8:

每千瓦时下降0.25元

小明家6月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.

小明该月支付的平段、谷段电价每千瓦时各为多少元?

如不使用分时电价结算,6月份小明家将多支付多少元?

知识点3储蓄、储蓄利息问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税

(2)利息=本金×

利率×

期数本息和=本金+利息利息税=利息×

税率(20%)

(3)

1.某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?

(不计利息税)

一年

2.25

三年

2.70

六年

2.88

2.为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:

(1)直接存入一个6年期;

(2)先存入一个三年期,3年后将本息和自动转存一个三年期;

(3)先存入一个一年期的,后将本息和自动转存下一个一年期;

你认为哪种教育储蓄方式开始存入的本金比较少?

3.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

5.用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。

问张叔叔当初购买这咱债券花了多少元?

知识点4:

工程问题

工作量=工作效率×

工作时间工作效率=工作量÷

工作时间

工作时间=工作量÷

工作效率完成某项任务的各工作量的和=总工作量=1

1.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

2.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

3.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?

4.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

5.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;

单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

 

6.某管道由甲乙两个工程队单独施工分别要30天,20天铺完。

如果两队从两端同时施工,需要多少天铺完?

已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。

7.某工人若每小时生产38个零件,在规定时间内还有15个不能完成;

若每小时生产42个,则可超额5个,问规定时间是多少?

共生产多少个零件?

8.某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?

9.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

知识点5:

若干应用问题等量关系的规律

(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×

增长率现在量=原有量+增长量

(2)等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式V=底面积×

高=S·

h=

r2h

②长方体的体积V=长×

宽×

高=abc

1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的

问每个仓库各有多少粮食?

2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,

≈3.14).

3.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×

130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?

知识点6:

行程问题

基本量之间的关系:

路程=速度×

时间时间=路程÷

速度速度=路程÷

(1)相遇问题

(2)追及问题

快行距+慢行距=原距快行距-慢行距=原距

(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

1.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?

2.一架飞机在A、B两个城市之间飞行,顺分需要5.5小时,逆风需要6小时,风速为24千米/时,A、B两城市之间的距离是多少?

3.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?

4.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

5.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

6.小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。

7.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

  

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?

  

(2)两车同时开出,相背而行多少小时后两车相距600公里?

  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

8.甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?

9.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

10.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问:

若已知队长320米,则通讯员几分钟返回?

若已知通讯员用了25分钟,则队长为多少米?

知识点7:

数字问题

(1)要搞清楚数的表示方法:

一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:

100a+10b+c。

然后抓住数字间或新数、原数之间的关系找等量关系列方程.

(2)数字问题中一些表示:

两个连续整数之间的关系,较大的比较小的大1;

偶数用2n表示,连续的偶数用2n+2或2n—2表示;

奇数用2n+1或2n—1表示。

1.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.

2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数

2.一个两位数,十位上的数字比个位上的数字小5,若此两位数的两个数字位置交换,得一新两位数,那么新两位数与原两位数大45,求新两位数与原两位数的积是多少?

注意:

虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这几类问题。

因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解

答案

1.

[分析]通过列表分析已知条件,找到等量关系式

进价

折扣率

标价

优惠价

利润率

60元

8折

X元

80%X

40%

等量关系:

商品利润率=商品利润/商品进价

解:

设标价是X元,

解之:

x=105优惠价为

2.

[分析]探究题目中隐含的条件是关键,可直接设出成本为X元

利润

(1+40%)X元

80%(1+40%)X

15元

(利润=折扣后价格—进价)折扣后价格-进价=15

设进价为X元,80%X(1+40%)—X=15,X=125

答:

进价是125元。

3.B

4.解:

设至多打x折,根据题意有

100%=5%解得x=0.7=70%

答:

至多打7折出售.

5.解:

设每台彩电的原售价为x元,根据题意,有10[x(1+40%)×

80%-x]=2700,x=2250

每台彩电的原售价为2250元.

6.解:

方案一:

获利140×

4500=630000(元)

获利15×

7500+(140-15×

6)×

1000=725000(元)

设精加工x吨,则粗加工(140-x)吨.

依题意得

=15解得x=60

获利60×

7500+(140-60)×

4500=810000(元)

因为第三种获利最多,所以应选择方案三.

7.解:

(1)y1=0.2x+50,y2=0.4x.

(2)由y1=y2得0.2x+50=0.4x,解得x=250.

即当一个月内通话250分钟时,两种通话方式的费用相同.

(3)由0.2x+50=120,解得x=350由0.4x+50=120,得x=300

因为350>

300故第一种通话方式比较合算.

8.解:

(1)由题意,得0.4a+(84-a)×

0.40×

70%=30.72解得a=60

(2)设九月份共用电x千瓦时,则0.40×

60+(x-60)×

70%=0.36x解得x=90

所以0.36×

90=32.40(元)

九月份共用电90千瓦时,应交电费32.40元.

9.解:

按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,

设购A种电视机x台,则B种电视机y台.

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程

1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,

可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.

可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意

由此可选择两种方案:

一是购A,B两种电视机25台;

二是购A种电视机35台,C种电视机15台.

(2)若选择

(1)中的方案①,可获利150×

25+250×

15=8750(元)

若选择

(1)中的方案②,可获利150×

35+250×

15=9000(元)

9000>

8750故为了获利最多,选择第二种方案.

10.答案:

0.005x+492000

11.[分析]等量关系:

本息和=本金×

(1+利率)

设半年期的实际利率为X,依题意得方程250(1+X)=252.7,解得X=0.0108

所以年利率为0.0108×

2=0.0216

银行的年利率是21.6%

12.[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。

(1)设存入一个6年的本金是X元,依题意得方程X(1+6×

2.88%)=20000,解得X=17053

(2)设存入两个三年期开始的本金为Y元,Y(1+2.7%×

3)(1+2.7%×

3)=20000,X=17115

(3)设存入一年期本金为Z元,Z(1+2.25%)6=20000,Z=17894

所以存入一个6年期的本金最少。

13.解:

设这种债券的年利率是x,根据题意有

4500+4500×

(1-20%)=4700,解得x=0.03

这种债券的年利率为0.03.

14.C[点拨:

根据题意列方程,得(10-8)×

90%=10(1-x%)-8,解得x=2,故选C]

15.22000元

16.[分析]甲独作10天完成,说明的他的工作效率是

乙的工作效率是

等量关系是:

甲乙合作的效率×

合作的时间=1

设合作X天完成,依题意得方程

两人合作

天完成

17.[分析]设工程总量为单位1,等量关系为:

甲完成工作量+乙完成工作量=工作总量。

设乙还需x天完成全部工程,设工作总量为单位1,由题意得,

  答:

乙还需

天才能完成全部工程。

18.[分析]等量关系为:

甲注水量+乙注水量-丙排水量=1。

  解:

设打开丙管后x小时可注满水池,

  由题意得,

打开丙管后

小时可注满水池。

19.解:

设甲、乙一起做还需x小时才能完成工作.

根据题意,得

+(

+

)x=1解这个方程,得x=

=2小时12分

甲、乙一起做还需2小时12分才能完成工作.

20.解:

设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×

5x+24×

4(16-x)=1440解得x=6

这一天有6名工人加工甲种零件.

21.设还需x天。

22.设第二个仓库存粮

23.解:

设圆柱形水桶的高为x毫米,依题意,得

·

)2x=300×

300×

80x≈229.3

圆柱形水桶的高约为229.3毫米.

24.设乙的高为

25.

(1)分析:

相遇问题,画图表示为:

慢车走的路程+快车走的路程=480公里。

  

设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480  解这个方程,230x=390

快车开出

小时两车相遇

分析:

相背而行,画图表示为:

两车所走的路程和+480公里=600公里。

设x小时后两车相距600公里,

由题意得,(140+90)x+480=600解这个方程,230x=120∴x=

小时后两车相距600公里。

  (3)分析:

等量关系为:

快车所走路程-慢车所走路程+480公里=600公里。

设x小时后两车相距600公里,由题意得,(140-90)x+480=600  50x=120  ∴x=2.4

2.4小时后两车相距600公里。

追及问题,画图表示为:

快车的路程=慢车走的路程+480公里。

  

设x小时后快车追上慢车。

由题意得,140x=90x+480 解这个方程,50x=480 ∴x=9.6

9.6小时后快车追上慢车。

追及问题,等量关系为:

设快车开出x小时后追上慢车。

由题意得,140x=90(x+1)+480 50x=570 ∴x=11.4  

快车开出11.4小时后追上慢车。

26.[分析]]追击问题,不能直接求出狗的总路程,但间接的问

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 家庭教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1