七年级下数学全册教案下学期5Word下载.docx

上传人:b****6 文档编号:16515754 上传时间:2022-11-24 格式:DOCX 页数:13 大小:736.57KB
下载 相关 举报
七年级下数学全册教案下学期5Word下载.docx_第1页
第1页 / 共13页
七年级下数学全册教案下学期5Word下载.docx_第2页
第2页 / 共13页
七年级下数学全册教案下学期5Word下载.docx_第3页
第3页 / 共13页
七年级下数学全册教案下学期5Word下载.docx_第4页
第4页 / 共13页
七年级下数学全册教案下学期5Word下载.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

七年级下数学全册教案下学期5Word下载.docx

《七年级下数学全册教案下学期5Word下载.docx》由会员分享,可在线阅读,更多相关《七年级下数学全册教案下学期5Word下载.docx(13页珍藏版)》请在冰豆网上搜索。

七年级下数学全册教案下学期5Word下载.docx

利用有序数对,可以很准确地表示出一个位置。

与3大道例1如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

6大道

5大道

4大道

A

3大道

B

2大道

1大道

1街

2街

3街

4街

5街

6街

分析:

图中确定点用前一个数表示大街,后一个数表示大道。

解:

其他的路径可以是:

(3,5)→(4,5)→(4,4)→(5,4)→(5,3);

(3,5)→(4,5)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(4,4)→(5,4)→(5,3);

(3,5)→(3,4)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(3,3)→(4,3)→(5,3);

根据描述的情景找出表示地点的数量

学生举例说明生活中的类似确定点的我位置的例子

明确数对的表示含义和格式

寻找规律确定路线

1.在教室里,根据座位图,确定数学课代表的位置

2.教材46页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

1.如图,A点为原点(0,0),则B点记为(3,1

2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km处。

例2如图是某次海战中敌我双方舰艇对峙示意图

,对我方舰艇来说:

(1)北偏东方向上有哪些目标?

要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]

1.如图是某城市市区的一部分示意图,对市政府来说:

(1)北偏东60的方向有哪些单位?

要想确定单位的位置。

还需要哪些数据?

(2)火车站与学校分别位于市政府的什么方向,怎样确

结合实际问题归纳方法

学生尝试描述位置

定他们的位置?

2.如图,马所处的位置为(2,3).

(1)你能表示出象的位置吗?

(2)写出马的下一步可以到达的位置。

仿照前面方法确定位置关系

可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类。

[小结]

1.为什么要用有序数对表示点的位置,没有顺序可以吗?

2.几种常用的表示点位置的方法.

[作业]

必做题:

教科书49页:

1题

6.1.2平面直角坐标系

3.认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

4.渗透对应关系,提高学生的数感.

平面直角坐标系和点的坐标.

正确画坐标和找对应点.

一.利用已有知识,引入

1.如图,怎样说明数轴上点A和点B的位置,

由数轴的表示引入,到两个数轴和有序数对。

2.根据下图,你能正确说出各个象棋子的位置吗?

从学生熟悉的物品入手,引申到平面直角坐标系。

二.明确概念

描述平面直角坐标系特征和画法

平面直角坐标系:

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangularcoordinatesystem).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;

竖直的数轴为y轴(y-axis)或纵轴,取向上方向为

正方向;

两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:

我们用一对有序数对表示平面上的点,这对数叫坐标。

表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1写出图中A、B、C、D点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

例2在平面直角坐标系中描出下列各点。

()A(3,4);

B(-1,2);

C(-3,-2);

D(2,-2)

问题1:

各象限点的坐标有什么特征?

练习:

教材49页:

练习1,2。

三.深入探索

教材48页:

探索:

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

3.教材49页习题6.1——第1题

4.教材50页——第2,4,5,6。

1.平面直角坐标系;

2.点的坐标及其表示

3.各象限内点的坐标的特征

4.坐标的简单应用

6.2.1用坐标表示地理位置

1.知识技能

了解用平面直角坐标系来表示地理位置的意义及主要过程;

培养学生解决实际问题的能力.

2.数学思考

通过学习如何用坐标表示地理位置,发展学生的空间观念.

3.解决问题

通过学习,学生能够用坐标系来描述地理位置.

4.情感态度

通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度.

1.重点:

利用坐标表示地理位置.

2.难点:

建立适当的直角坐标系,利用平面直角坐标系解决实际问题.

[教学过程]

一、创设问题情境

观察:

教材第54页图6.2-1.

今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.

二、师生互动,探究用坐标表示地理位置的方法

活动1:

根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.

小刚家:

出校门向东走150米,再向北走200米.

小强家:

出校门向西走200米,再向北走350米,最后再向东走50米.

小敏家:

出校门向南走100米,再向东走300米,最后向南走75米.

问题:

如何建立平面直角坐标系呢?

以何参照点为原点?

如何确定x轴、y轴?

如何选比例尺来绘制区域内地点分布情况平面图?

小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:

10000(即图中1cm相当于实际中10000cm,即100米).

由学生画出平面直角坐标系,标出学校的位置,即(0,0).

引导学生一同完成示意图.

选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?

可以很容易地写出三位同学家的位置.

活动2:

归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.

经过学生讨论、交流,教师适当引导后得出结论:

(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.

应注意的问题:

用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;

二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;

三是要注意标明比例尺和坐标轴上的单位长度.

有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(举例)

活动3:

进一步理解如何用坐标表示地理位置.

展示问题:

(教材第62页,公园平面图)

春天到了,初一(13)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.

张明:

“我这里的坐标是(300,300)”.

王丽:

“我这里的坐标是(200,300)”.

李华:

“我在你们东北方向约420米处”.

实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?

你理解李华同学所说的“东北方向约420米处”吗?

用他们的方法,你能描述公园内其他景点的位置吗?

让学生分别画出直角坐标系,标出其他景点的位置.

三、小结

让学生归纳说出如何利用坐标表示地理位置.

四、课后作业

教材第60页第5题、第8题.

五、备选练习

1.根据以下条件画一幅示意图,标出某一公园的各个景点.

菊花园:

从中心广场向北走150米,再向东走150米;

湖心亭:

从中心广场向西走150米,再向北走100米;

松风亭:

从中心广场向西走100米,再向南走50米;

育德泉:

从中心广场向北走200米.

2.教材第65页第4题.

 

6.2.2用坐标表示平移

掌握坐标变化与图形平移的关系;

能利用点的平移规律将平面图形进行平移;

会根据图形上点的坐标的变化,来判定图形的移动过程.

发展学生的形象思维能力,和数形结合的意识.

用坐标表示平移体现了平面直角坐标系在数学中的应用.

培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.

掌握坐标变化与图形平移的关系.

利用坐标变化与图形平移的关系解决实际问题.

一、引言

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.

二、新课

教材第56页图.

(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?

(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

规律:

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));

将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).

教师说明:

对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;

反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

例如图

(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).

(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?

(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

如图

(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.

思考题:

由学生动手画图并解答.

归纳:

三、练习

教材第58页练习;

习题6.2中第1、2、4题.

四、作业

教材第59页第3题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 自我管理与提升

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1