四年级上册奥数竞赛试题全国通用含答案Word文档格式.docx
《四年级上册奥数竞赛试题全国通用含答案Word文档格式.docx》由会员分享,可在线阅读,更多相关《四年级上册奥数竞赛试题全国通用含答案Word文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
15.按规律填数:
①2,4,7,11,16,
②12,19,33,61,117,
16.找一找规律,再在横线里填上适当的数.3、4、5、8、7、16、9、32、 、
四、其他问题
17.请你任意写出5个真分数 .
18.光明小学参加课外活动小组的人数统计如图所示,则该校参加课外活动小组的共有 人.
19.2005年4月lO日是星期日,则2005年6月1日是星期 .
20.一个活动性较强的细菌每经过10秒就分裂为一个活动性较强的与一个活动性较弱的细菌,而一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌.问:
一个活动性较强的细菌,经过60秒可繁殖多少个细菌?
21.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.
甲说:
“B第三名,C第五名.”乙说:
“E第四名,D第五名.”
丙说:
“A第一名,E第四名.”丁说:
“A第二名,B第一.”
戊说:
“A第三名,D第四名.”
结果每人都只预测对了一半.“请问:
这五匹马的名次是怎样排列的?
”
22.作家A、B、C、D、E依次坐成一排为同学们签名售书,已知每位同学恰好找座位相邻的三位作家签名,已知一共有22个同学同时找到B和D签名,并且C一共签名38次,A比E多签名6次,那么B一共签名 次.
23.如图,ABCD是一个梯形,已知三角形ABD的面积是12平方厘米,三角形AOD的面积比三角形BOC的面积少12平方厘米,那么,梯形ABCD的面积是 平方厘米.
24.2006年学校1月20日开始放寒假,3月1日上学,学校放了 天寒假.
25.假设某餐厅备有肉4种,鱼3种,蔬菜5种,有位客人预计肉、鱼和蔬菜各点一种,他有 种点菜的方法.
26.将自然数按下面的形式排列,试问:
第20行最左边的数是 ,第20行所有数的和是 .
27.芳芳说:
“我13岁,比惠惠小3岁,比萍萍大一岁”;
惠惠说:
“我不是年龄最小的,萍萍和我差4岁,萍萍是11岁”;
萍萍说:
“我比芳芳年龄小,芳芳10岁,惠惠比芳芳大2岁,”以上每人所说的三句话中,都有一句是错误的,则芳芳多少岁?
惠惠多少岁,萍萍多少岁?
参考答案与试题解析
1.【分析】最左边的位置有3个小朋友可以选,中间位置还有2个小朋友可以选,最后一个位置只有1个小朋友可以选;
各个位置上可以选的方法的积就是总的次数.
【解答】解:
3×
2×
1=6(种);
答:
有6种不同的排列方法.
故答案为:
6.
【点评】本题也可以采取给三人编号,然后写出全部排列的方法求解.
2.【分析】分类计数,分只有一种,只有两种逐个列举即可.
【解答】解答:
5+1=6
2+2+2=6
2+2+1+1=6
2+1+1+1+1=6
1+1+1+1+1+1=6
共有5种方法.
5.
【点评】本题考查了筛选与枚举问题,关键是确定分类的办法和凑数的范围,要注意按顺序列举.
3.【分析】单个的小三角形有12个,由三个小三角形组成的三角形有6个,由九个小三角形组成的三角形有2个,则可以求出三角形的总个数.
图中有三角形:
12+6+2=20(个).
20.
【点评】此题关键是将三角形进行分类再计数.
4.【分析】如下图所示,那么在5×
5方格中,画一条直线,最多穿过9个方格.
在2×
2方格中,画一条直线最多穿过3个方格,2+1;
3方格中,画一条直线最多穿过5个方可知,3+2;
以此类推,那么在5×
5方格中,画一条直线,最多穿过5+4=9个方格.
9.
【点评】此题考查了数与形结合的规律,以上两种方法都可得解.
5.【分析】结合题目的要求,我们不妨先设出四个小朋友,然后具体分析(过程见解答)即可得出答案.
设这四个小朋友分别是a,b,c,d,则收到a送的礼物有b、c、d三种可能,下面不妨以其中的一种可能为例分析:
①以给b为例:
b收到a送的礼物
那么b送的礼物如果给a,那么必然是c和d交换礼物,这是一种
b送的礼物如果给了c,那么c不能给a只能给d,所以d要给a,这也是一种
同理b的礼物给了d又是一种
则总共有1+1+1=3种即a送给b有3种;
②同样,若给c和d也是各有3种;
因此共计3+3+3=9种.
故:
此空为9.
【点评】解答此题关键是理解题意,按要求进行分析即可得出答案.
6.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.
由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,只有菱形满足这一条件,
菱形.
【点评】此题考查了利用对称设计图案.
7.【分析】借助正方形和线段构成的角来比较角的大小.:
∠1=180°
﹣(∠3+∠4),∠2=180°
﹣(∠4+∠5)=180°
﹣2∠4.很明显∠3<∠4,
所以180°
﹣(∠3+∠4)>180°
﹣2∠4.即∠1>∠2.
【点评】利用正方形来确定角的度数.
8.【分析】先写出分个图形阴影部分的面积与整个图形面积的比,然后比较这几个比值的大小,从而得出答案.
由题意知:
A、把圆平均分在了6份,阴影部分的面积与整个图形面积的比值是:
,
B、把正方形平均分成了8份,阴影部分的面积与整个图形面积的比值是:
C、把正方形平均分成了8份,阴影部分的面积与整个图形面积的比值是:
D、通过割补法可知,阴影部分的面积与整个图形面积的比值是:
通过比较可知最大的为
B.
【点评】此题考查了分数的意义和大小比较.
9.【分析】根据等底等高的三角形面积相等划分即可.
(答案不唯一)
【点评】本题考查了等底等高的三角形面积相等的灵活应用.
10.【分析】根据题干分析可得,原三角形与新三角形相似三角形,相似比是1:
3.根据相似三角形的性质可得:
相似三角形的面积的比等于相似比的平方,相似三角形的周长的比等于相似比.由此即可得出答案.
根据题干可得原三角形与新三角形相似,相似比是1:
3,
由相似三角形的性质可得:
周长的比等于相似比,
即:
原三角形周长:
新三角形周长=1:
3
新三角形的周长是原三角形的周长的3倍.
3.
【点评】此题考查了相似三角形的相似比与它们周长的比以及面积的比的性质.
11.【分析】根据正方体展开图的常见形式作答即可.
由展开图可知:
A、B能围成正方体;
C围成几何体时,有两个面重合,故不能围成正方体.
故选C.
【点评】展开图能折叠成正方体的基本类型有:
“一,四,一”“三,三”“二,二,二”“一,三,二”.
12.【分析】根据正方体的特征和展开图的形状可知,2在正面,4在背面;
6和8在侧面;
10和12在上下面;
由此解答.
通过上面的分析得:
最右边的正方形上的数字是4.
4.
【点评】此题主要考查正方体的特征及展开图的形状.
13.【分析】先从变化中观察,寻找规律.细心观察四个图形,可以发现:
在拼接图形时,每增加一个单位六边形,拼接图形的周长要么不增加,要么增加2或4,据此分析解答即可.
因为两个单位六边形拼接的图形的周长只能是10,18﹣10=8,8=4+4=4+2+2=2+2+2+2,所以当拼接图形的周长等于18时,所拼接的单位六边形有4个、5个、6个或7个,如下图:
【点评】本题考查图形的规律.
14.【分析】观察算式可以发现,式子中有两个加数,第一个加数3、6、12、24、48、…依次扩大2倍,第二个加数12、10、8、6、4…依次减少2,据此规律,第六个算式是96+2=98.
第一个加数3、6、12、24、48、…依次扩大2倍,第二个加数12、10、8、6、4…依次减少2,
第六个算式为:
48×
2+(4﹣2)=96+2=98.
98.
【点评】观察式子,找出式子的变化规律,然后运用总结的规律解决问题.
15.【分析】①后一个数是前一个数依次增加2,3,4,…所得.
②19﹣12=7,33﹣19=14,61﹣33=28,117﹣61=56,依次增加7的1、2、4、8、16倍即可.
①16+6=22
②117+7×
16=229
22,229.
【点评】通过观察数字的特点,找出相邻两个数之间的倍数关系或者差之间的关系,再由此求解即可.
16.【分析】奇数项是它前面的奇数项加2所得,偶数项是它前面的偶数项乘2所得,由此得出答案.
9+2=11,
32×
2=64;
11,64.
【点评】数列中的规律:
关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.
17.【分析】根据真分数的定义解答即可.
由题意知,分子小于分母的分数叫真分数,所以任意写出的5个真分数可为:
、
;
【点评】此题考查了真分数的定义.
18.【分析】由于条形统计图的高度代表了数量的多少,所以要求参加课外活动小组的共有多少人,只要把所有小组的人数加起来即可.
6+9+15+20+25+30,
=105(人);
105.
【点评】此题考查了学生根据条形统计图回答问题的能力.
19.【分析】先求出从4月10日到6月1日经过了多少天,再求这些天里有几个星期,还余几天,根据余数判断6月1日是星期几.
4月10日到4月30日经过了20天,5月有31天,再到6月1日又经过1天;
共经过:
20+31+1=52(天),
52÷
7=7(周)…3(天);
即6月1日是星期三.
三.
【点评】本题先求出经过的天数,再求这些天里有几周,还余几天,然后根据余数推算.
20.【分析】每一个活动性较强的细菌都会分解,经过60秒仍然是1个一个活动性较强的细菌;
根据一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌,而每10秒又会分裂出1个活动性较弱的细菌,列举出60秒内它们的数量.
一个活动性较强的细菌最后只剩下1个;
活动性较弱的细菌分裂过程如下:
第10秒:
1个,
第20秒:
1+1=2(个),
第30秒:
2+1+1=4(个),
第40秒:
2+2+1+1=6(个),
第50秒:
4+2+2+1+1=10(个),
第60秒:
4+4+2+2+1+1=14(个),
14+1=15(个);
一个活动性较强的细菌经过60秒可繁殖15个细菌.
【点评】根据两种不同的细菌分裂方式分别求出60秒时它们各有的数量,再相加即可.
21.【分析】根据丙说:
“A第一名,E第四名.”假设E不是第四名,则A是第一名就正确,那么丁说:
“A第二名,B第一.”都错误,这与每人都只预测对了一半相矛盾;
所以E是第四名是正确,据此进一步解答即可.
根据丙说:
“A第一名,E第四名.”假设A是第一名,则E不是第四名,
那么丁说:
所以E是第四名是正确,
则,根据戊的表述可得A是第三名,
再根据甲的表述可得C是第五名,
因为A是第三名,再根据丁的表述可得B是第一名,
则剩下的D就是第二名,
综合上述可得,B是第一名,D是第二名,A是第三名,E是第四名,C是第五名.
【点评】条件分析﹣﹣﹣假设法:
假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.
22.【分析】同时找到B和D签名的肯定找了C签名,因为C一共签了38次,这样就可以确定找A和E签名的次数之和是38﹣22=16次,再由A比E多签名6次可以求出A签的次数,因为找A签名的人肯定找B签名,所以可以推算出B签名的次数.
38﹣22=16(次)
(16+6)÷
2=11(次)
11+22=33(次)
故填33.
【点评】此题的关键是分析38﹣22=16次所代表的含义是什么.
23.【分析】根据等量加等量差不变,可知三角形ABD和三角形ABC的面积的差也是12平方厘米,由此可以求出三角形ABC的面积,据此分析解答即可.
S△AOD+S△AOB=S△ABD,S△BOC+S△AOB=S△ABC,
则三角形ABD的面积比三角形ABC的面积少12平方厘米.
S△ABC=12+12=24(平方厘米)
S梯形ABCD=24+12=36(平方厘米)
故填:
36.
【点评】本题考查的是三角形和梯形的面积计算.
24.【分析】2006年的1月份有31天,2月份有28天,据此解答即可.
31﹣20+1+28=40(天)
40
【点评】本题考查的是周期问题.
25.【分析】根据题意可得,肉有4种选择,鱼有3种选择,蔬菜有5种选择,根据乘法原理可得,共有4×
5=60种选择;
据此解答即可.
4×
5=60(种)
60.
【点评】本题考查了乘法原理:
做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×
m2×
m3×
…×
mn种不同的方法.
26.【分析】观察数阵可得规律,每行数据的个数是奇数列,先求出第19行有多少个数,即1+2×
(19﹣1)=37个,再求出19行的总个数1+3+5+…+37=361,再进一步解答即可.
1+2×
(19﹣1)=37(个)
1+3+5+…+37=19×
19=361(个)
(20﹣1)=39(个)
所以,第20行最左边的数是361+1=362;
第20行最后一个数是:
361+39=400
第20行所有数的和是:
(362+400)×
39÷
2
=762×
=14859
562;
14859.
【点评】一般地说,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.
27.【分析】根据题意可知:
芳芳说的“我13岁”和萍萍说的“芳芳10岁”这两句话中肯定有一句是对的,有一句是错的,据此分析解答即可.
假设芳芳13岁是对的,则芳芳10岁就是错的,此时惠惠比芳芳大2岁,则惠惠是15岁,芳芳比萍萍大1岁,则萍萍是12岁,这样惠惠和萍萍就相差3岁,和惠惠说的“萍萍和我相差4岁”相矛盾,不符合题意.
所以芳芳是10岁,此时惠惠13岁,萍萍9岁.
芳芳10岁,惠惠13岁,萍萍9岁.
【点评】本题考查的是逻辑推理.