精品小升初数学典型应用题文档格式.docx

上传人:b****3 文档编号:16426071 上传时间:2022-11-23 格式:DOCX 页数:18 大小:29.33KB
下载 相关 举报
精品小升初数学典型应用题文档格式.docx_第1页
第1页 / 共18页
精品小升初数学典型应用题文档格式.docx_第2页
第2页 / 共18页
精品小升初数学典型应用题文档格式.docx_第3页
第3页 / 共18页
精品小升初数学典型应用题文档格式.docx_第4页
第4页 / 共18页
精品小升初数学典型应用题文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

精品小升初数学典型应用题文档格式.docx

《精品小升初数学典型应用题文档格式.docx》由会员分享,可在线阅读,更多相关《精品小升初数学典型应用题文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

精品小升初数学典型应用题文档格式.docx

需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

(1)1台拖拉机1天耕地多少公顷?

90÷

3=10(公顷)

(2)5台拖拉机6天耕地多少公顷?

10×

6=300(公顷)

列成综合算式90÷

6=10×

30=300(公顷)

5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

(1)1辆汽车1次能运多少吨钢材?

100÷

4=5(吨)

(2)7辆汽车1次能运多少吨钢材?

7=35(吨)

(3)105吨钢材7辆汽车需要运几次?

105÷

35=3(次)

列成综合算式105÷

(100÷

7)=3(次)

需要运3次。

2归总问题

【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×

份数=总量

总量÷

1份数量=份数

另一份数=另一每份数量

【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?

(1)这批布总共有多少米?

3.2×

791=2531.2(米)

(2)现在可以做多少套?

2531.2÷

2.8=904(套)

列成综合算式3.2×

791÷

现在可以做904套。

例2小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?

(1)《红岩》这本书总共多少页?

24×

12=288(页)

(2)小明几天可以读完《红岩》?

288÷

36=8(天)

列成综合算式24×

12÷

小明8天可以读完《红岩》。

例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

(1)这批蔬菜共有多少千克?

50×

30=1500(千克)

(2)这批蔬菜可以吃多少天?

1500÷

(50+10)=25(天)

列成综合算式50×

30÷

(50+10)=1500÷

60=25(天)

这批蔬菜可以吃25天。

3和差问题

【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷

2

小数=(和-差)÷

2

【解题思路和方法】简单的题目可以直接套用公式;

复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

解甲班人数=(98+6)÷

2=52(人)

乙班人数=(98-6)÷

2=46(人)

甲班有52人,乙班有46人。

例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

解长=(18+2)÷

2=10(厘米)

宽=(18-2)÷

2=8(厘米)

长方形的面积=10×

8=80(平方厘米)

长方形的面积为80平方厘米。

例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。

由此可知

甲袋化肥重量=(22+2)÷

2=12(千克)

丙袋化肥重量=(22-2)÷

2=10(千克)

乙袋化肥重量=32-12=20(千克)

答:

甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×

2+3),甲与乙的和是97,因此

甲车筐数=(97+14×

2+3)÷

2=64(筐)

乙车筐数=97-64=33(筐)

甲车原来装苹果64筐,乙车原来装苹果33筐。

4和倍问题

【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷

(几倍+1)=较小的数

总和-较小的数=较大的数

较小的数×

几倍=较大的数

【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

(1)杏树有多少棵?

248÷

(3+1)=62(棵)

(2)桃树有多少棵?

62×

3=186(棵)

杏树有62棵,桃树有186棵。

例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

(1)西库存粮数=480÷

(1.4+1)=200(吨)

(2)东库存粮数=480-200=280(吨)

东库存粮280吨,西库存粮200吨。

例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。

把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

那么,几天以后甲站的车辆数减少为

(52+32)÷

(2+1)=28(辆)

所求天数为(52-28)÷

(28-24)=6(天)

6天以后乙站车辆数是甲站的2倍。

例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

这时(170+4-6)就相当于(1+2+3)倍。

那么,

甲数=(170+4-6)÷

(1+2+3)=28

乙数=28×

2-4=52

丙数=28×

3+6=90

甲数是28,乙数是52,丙数是90。

5差倍问题

【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷

(几倍-1)=较小的数

较小的数×

几倍=较大的数

例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?

124÷

(3-1)=62(棵)

果园里杏树是62棵,桃树是186棵。

例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

(1)儿子年龄=27÷

(4-1)=9(岁)

(2)爸爸年龄=9×

4=36(岁)

父子二人今年的年龄分别是36岁和9岁。

例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此

上月盈利=(30-12)÷

(2-1)=18(万元)

本月盈利=18+30=48(万元)

上月盈利是18万元,本月盈利是48万元。

例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。

把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此

剩下的小麦数量=(138-94)÷

(3-1)=22(吨)

运出的小麦数量=94-22=72(吨)

运粮的天数=72÷

9=8(天)

8天以后剩下的玉米是小麦的3倍。

6倍比问题

【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

一个数量=倍数

另一个数量×

倍数=另一总量

【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

(1)3700千克是100千克的多少倍?

3700÷

100=37(倍)

(2)可以榨油多少千克?

40×

37=1480(千克)

列成综合算式40×

(3700÷

100)=1480(千克)

可以榨油1480千克。

例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

(1)48000名是300名的多少倍?

48000÷

300=160(倍)

(2)共植树多少棵?

400×

160=64000(棵)

列成综合算式400×

(48000÷

300)=64000(棵)

全县48000名师生共植树64000棵。

例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?

全县16000亩果园共收入多少元?

(1)800亩是4亩的几倍?

800÷

4=200(倍)

(2)800亩收入多少元?

11111×

200=2222200(元)

(3)16000亩是800亩的几倍?

16000÷

800=20(倍)

(4)16000亩收入多少元?

2222200×

20=44444000(元)

全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

7相遇问题

【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷

(甲速+乙速)

总路程=(甲速+乙速)×

相遇时间

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

解392÷

(28+21)=8(小时)

经过8小时两船相遇。

例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×

2

相遇时间=(400×

2)÷

(5+3)=100(秒)

二人从出发到第二次相遇需100秒时间。

例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×

2)千米,因此,

相遇时间=(3×

(15-13)=3(小时)

两地距离=(15+13)×

3=84(千米)

两地距离是84千米。

8追及问题

【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷

(快速-慢速)

追及路程=(快速-慢速)×

追及时间

例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

(1)劣马先走12天能走多少千米?

75×

12=900(千米)

(2)好马几天追上劣马?

900÷

(120-75)=20(天)

列成综合算式75×

(120-75)=900÷

45=20(天)

好马20天能追上劣马。

例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。

又知小明跑200米用40秒,则跑500米用[40×

(500÷

200)]秒,所以小亮的速度是

(500-200)÷

[40×

200)]=300÷

100=3(米)

小亮的速度是每秒3米。

例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×

(22-16)]千米,甲乙两地相距60千米。

由此推知

追及时间=[10×

(22-16)+60]÷

(30-10)=120÷

20=6(小时)

解放军在6小时后可以追上敌人。

例4一辆客车从甲站开往乙站,每小时行48千米;

一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

解这道题可以由相遇问题转化为追及问题来解决。

从题中可知客车落后于货车(16×

2)千米,客车追上货车的时间就是前面所说的相遇时间,

这个时间为16×

(48-40)=4(小时)

所以两站间的距离为(48+40)×

4=352(千米)

列成综合算式(48+40)×

[16×

(48-40)]=88×

甲乙两站的距离是352千米。

例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?

解要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×

2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,

那么,二人从家出走到相遇所用时间为

180×

(90-60)=12(分钟)

家离学校的距离为90×

12-180=900(米)

家离学校有900米远。

例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校

恰好准时上课。

后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。

求孙亮跑步的速度。

解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。

如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。

所以步行1千米所用时间为1÷

[9-(10-5)]=0.25(小时)=15(分钟)

跑步1千米所用时间为15-[9-(10-5)]=11(分钟)

跑步速度为每小时1÷

11/60=5.5(千米)

孙亮跑步速度为每小时5.5千米。

9植树问题

【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】线形植树棵数=距离÷

棵距+1

环形植树棵数=距离÷

棵距

方形植树棵数=距离÷

棵距-4

三角形植树棵数=距离÷

棵距-3

面积植树棵数=面积÷

(棵距×

行距)

【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。

例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?

解136÷

2+1=68+1=69(棵)

一共要栽69棵垂柳。

例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?

解400÷

4=100(棵)

一共能栽100棵白杨树。

例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?

解220×

8-4=110-4=106(个)

一共可以安装106个照明灯。

例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?

解96÷

(0.6×

0.4)=96÷

0.24=400(块)

至少需要400块地板砖。

例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?

(1)桥的一边有多少个电杆?

500÷

50+1=11(个)

(2)桥的两边有多少个电杆?

11×

2=22(个)

(3)大桥两边可安装多少盏路灯?

22×

2=44(盏)

大桥两边一共可以安装44盏路灯。

10年龄问题

【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

两个数的差÷

例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?

明年呢?

解35÷

5=7(倍)

(35+1)÷

(5+1)=6(倍)

今年爸爸的年龄是亮亮的7倍,

明年爸爸的年龄是亮亮的6倍。

例2母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

(1)母亲比女儿的年龄大多少岁?

37-7=30(岁)

(2)几年后母亲的年龄是女儿的4倍?

(4-1)-7=3(年)

列成综合算式(37-7)÷

3年后母亲的年龄是女儿的4倍。

例33年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?

解今年父子的年龄和应该比3年前增加(3×

2)岁,

今年二人的年龄和为49+3×

2=55(岁)

把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为55÷

(4+1)=11(岁)

今年父亲年龄为11×

4=44(岁)

今年父亲年龄是44岁,儿子年龄是11岁。

例4甲对乙说:

“当我的岁数曾经是你现在的岁数时,你才4岁”。

乙对甲说:

“当我的岁数将来是你现在的岁数时,你将61岁”。

求甲乙现在的岁数各是多少?

(可用方程解)

解这里涉及到三个年份:

过去某一年、今年、将来某一年。

列表分析:

 

过去某一年

今年

将来某一年

□岁

△岁

61岁

4岁

表中两个“□”表示同一个数,两个“△”表示同一个数。

因为两个人的年龄差总相等:

□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,

因此二人年龄差为(61-4)÷

3=19(岁)

甲今年的岁数为△=61-19=42(岁)

乙今年的岁数为□=42-19=23(岁)

甲今年的岁数是42岁,乙今年的岁数是23岁。

11行船问题

【含义】行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;

水速是水流的速度,船只顺水航行的速度是船速与水速之和;

船只逆水航行的速度是船速与水速之差。

【数量关系】(顺水速度+逆水速度)÷

2=船速

(顺水速度-逆水速度)÷

2=水速

顺水速=船速×

2-逆水速=逆水速+水速×

逆水速=船速×

2-顺水速=顺水速-水速×

【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

解由条件知,顺水速=船速+水速=320÷

8,而水速为每小时15千米,

所以,船速为每小时320÷

8-15=25(千米)

船的逆水速为25-15=10(千米)

船逆水行这段路程的时间为320÷

10=32(小时)

这只船逆水行这段路程需用32小时。

例2甲船逆水行360千米需18小时,返回原地需10小时;

乙船逆水行同样一段距离需15小时,返回原地需多少时间?

解由题意得甲船速+水速=360÷

10=36

甲船速-水速=360÷

18=20

可见(36-20)相当于水速的2倍,

所以,水速为每小时(36-20)÷

2=8(千米)

又因为,乙船速-水速=360÷

15,

所以,乙船速为360÷

15+8=32(千米)

乙船顺水速为32+8=40(千米)

所以,乙船顺水航行360千米需要360÷

40=9(小时)

乙船返回原地需要9小时。

例3一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

解这道题可以按照流水问题来解答。

(1)两城相距多少千米?

(576-24)×

3=1656(千米)

(2)顺风飞回需要多少小时?

1656÷

(576+24)=2.76(小时)

列成综合算式[(576-24)×

3]÷

飞机顺风飞回需要2.76小时。

12列车问题..

【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】火车过桥:

过桥时间=(车长+桥长)÷

车速

火车追及:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1