八年级数学教案Word格式.docx
《八年级数学教案Word格式.docx》由会员分享,可在线阅读,更多相关《八年级数学教案Word格式.docx(8页珍藏版)》请在冰豆网上搜索。
六、教学过程设计
(一)创设情境,导入课题
问题1:
美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线.某城市广场呈长方形,长为1003米,宽997米.
你能用简便的方法计算出它的面积吗?
看谁算得快:
师生活动:
学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.
信息技术支持:
PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题.
(二)探索新知,尝试发现
问题2:
时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛.你会计算改造后的花坛的面积吗?
计算下列多项式的积,你能发现什么规律?
(1)(m+1)(m-1)=;
(2)(5+x)(5-x)=;
(3)(2x+1)(2x-1)=.
学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.
PPT动画演示.
结论是一个平方减去另一个平方的形式,效果十分鲜明.
(三)总结归纳,发现新知
问题3:
依照以上三道题的计算回答下列问题:
(1)式子的左边具有什么共同特征?
(2)它们的结果有什么特征?
(3)能不能用字母表示你的发现?
问题4:
你能用文字语言表示所发现的规律吗?
教师提问,学生通过自主探究、合作交流,发现规律:
两个数的和与这两个数的差的积,等于这两个数的平方差.
学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述.式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,
PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力.
(四)数形结合,几何说理
问题5:
在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?
提示:
a2-b2与(a+b)(a-b)都可表示该图形的面积.
通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想.
PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识.
(五)剖析公式,发现本质
1.左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;
右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2.
2.让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:
a和b可能数或代表式.
在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心.
通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题.
(六)巩固运用,内化新知
问题6:
判断下列算式能否运用平方差公式计算:
(1)(2x+3a)(2x3b);
(2)(-m+n)(m-n).
问题7:
利用平方差公式计算:
(1)(3x+2y)(3x-2y);
(2)(-7+2m2)(-7-2m2).
学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.
PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写.
(七)拓展应用,强化思维
问题8:
利用平方差公式计算情景导航中提出的问题:
即:
1003×
997=(1000+3)(1000-3)=10002-32=1000000-9=999991.
问题9:
小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.
设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力.
PPT展示书写步骤,有利于节省时间.
(八)总结概括,自我评价
问题10:
这节课你有哪些收获?
还有什么困惑?
提示:
从知识和情感态度两个方面加以小结.
使学生对本节课的知识有一个系统全面的认识,分组讨论后交流.
PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解.
(九)课后作业
1.必做题:
课本P36习题组1、2.
2.选做题:
作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.
七、教学反思
1.本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心.
2.多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质.
3.信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性.教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性.信息技术的应用大大提高了课堂效率.
多边形的内角和 一、内容和内容解析
1.内容
多边形的内角和.
2.内容解析
本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.
教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:
得出六边形的外角和为360°
如果把六边形换成n边形可以得到同样的结果:
n边形的外角和等于360°
.
本节课的教学重点是:
多边形的内角和与多边形的外角和公式.
二、目标和目标解析
1.教学目标
(1)了解多边形的内角、外角等概念.
(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
2.教学目标解析
(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.
(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.
三、教学问题诊断分析
对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×
180°
,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.
本节课的教学难点:
多边形的内角和定理的推导.
四、教学过程设计
1.复习导入
我们已经证明了三角形的内角和为180°
,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°
,现在你能利用三角形的内角和定理证明吗?
2.多边形的内角和
如图,从四边形的一个顶点出发可以引几条对角线?
它们将四边形分成几个三角形?
那么四边形的内角和等于多少度?
可以引一条对角线;
它将四边形分成两个三角形;
因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×
=360°
类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?
观察下面的图形,填空:
五边形六边形
从五边形一个顶点出发可以引条对角线,它们将五边形分成个三角形,五边形的内角和等于;
从六边形一个顶点出发可以引条对角线,它们将六边形分成个三角形,六边形的内角和等于;
从n边形一个顶点出发,可以引条对角线,它们将n边形分成个三角形,n边形的内角和等于.
n边形的内角和等于(n-2)180°
从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?
分法一:
如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.
∴五边形的内角和为5×
-2×
=(5-2)×
=540°
图1图2
分法二:
如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.
∴五边形的内角和为(5-1)×
-180°
如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×
3.例题
例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?
如图,已知四边形ABCD中,∠A+∠C=180°
,求∠B与∠D的关系.
分析:
∠A、∠B、∠C、∠D有什么关系?
解:
∵∠A+∠B+∠C+∠D=(4-2)×
又∠A+∠C=180°
∴∠B+∠D=360°
-(∠A+∠C)=180°
这就是说,如果四边形一组对角互补,那么另一组对角也互补.
例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:
多边形的一个外角同与它相邻的内角有什么关系?
六边形的内角和是多少度?
解:
∵∠1+∠BAF=180°
∠2+∠ABC=180°
∠3+∠BCD=180°
∠4+∠CDE=180°
∠5+∠DEF=180°
∠6+∠EFA=180°
∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA
=6×
又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×
=4×
∴∠1+∠2+∠3+∠4+∠5+∠6=2×
这就是说,六边形形的外角和为360°
如果把六边形换成n边形可以得到同样的结果:
n边形的外角和等于360°
对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°
4.课堂练习
课本24页练习1、2、3题.
5.课堂小结
n边形的内角和是多少度?
n边形的外角和是多少度?
6.布置作业:
教科书习题第1,3,5,7,10题.
五、目标检测设计
1.十边形的内角和为( ).
260°
440°
620°
800°
【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.
2.一个多边形每个外角都是60°
,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.
【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.
3.一个多边形的内角和等于1440°
,则它的边数为__________.
【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.
4.如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°
,则∠1+∠2等于( ).
°
°
°
D.不能确定
【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.
因式分解提公因式法 一、教学目标
1.理解因式分解的概念,因式分解与整式乘法的关系.
2.了解公因式的概念,能熟练运用提公因式法进行因式分解.
3.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法.
二、教学重难点
会用提公因式法分解因式.
如何确定公因式及提出公因式后的另外因式.
三、教学过程
(一)创设情境,引出问题
学校为了丰富我们的课外活动,打算在原操场两侧分别建一个网球场和篮球场,各场地长、宽如下图所示:
问题1:
你能用几种方法表示扩大后的操场面积?
预设1:
ma+mb+mc.
预设2:
m(a+b+c).
不同的表示方法之间有什么关系?
预设:
ma+mb+mc=m(a+b+c).
我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.
如何从数学的角度认识不同的表示方法之间的关系?
因式分解与整式乘法是方向相反的变形.
【设计意图】通过具体问题的解决,让学生在思考、观察和探索的过程中,了解因式分解的概念,认识因式分解的基本属性将和差化积的式子变形,同时发现因式分解与整式乘法的互逆变形关系,为后续探索因式分解的具体方法做铺垫.
练习1:
根据你对概念的理解,判断下列变形是不是因式分解.
(1)2m(m-n)=2m2-2mn;
(2)x2-2x+1=x(x-2)+1;
(3)a2-b2=(a+b)(a-b);
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)m2-1+n2=(m+1)(n-1).
【设计意图】通过实例辨析,让学生进一步理解因式分解的概念,认识到因式分解是恒等变形.
(二)探索发现,推陈出新
观察多项式ma+mb+mc.
思考:
这个多项式的各项有什么特点?
它的各项都有一个公共的因式m.
我们把因式m叫做这个多项式各项的公因式.
例1:
找出下面多项式的公因式.
(1)4xy2+2x2y3;
(2)ax2+2ax-4ay.
练习2:
写出下列多项式各项的公因式.
(1)4ax-8ay;
(2)5y3+20y2;
(3)a2b-2ab2+ab;
(4)-4a3b2-6a2b+2ab;
(5)(2a+b)(2a-3b)-3a(2a+b).
归纳方法:
如何确定多项式各项的公因式?
1.定系数:
找多项式各项系数的最大公约数.
2.定字母:
找多项式各项相同的字母.
3.定指数:
相同字母的最低的次数.
【设计意图】通过学生观察、思考和总结归纳,让学生了解公因式的概念,进一步了解因式分解与整式乘法的关系,了解因式分解的理论依据,为提公因式法分解因式做基础,初步理解提公因式法分解因式.
(三)例题展示,规范解题
因式分解:
27x3-9x2y2.
如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.
例2:
把2x2-8xy+x因式分解.
原式=x2x-x8y+x1
=x(2x-8y+1).
【设计意图】通过例题的教学,引导学生:
(1)了解提公因式法分解因式的基本步骤;
(2)积累找公因式的经验;
(3)知道提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;
(4)用公因式法分解因式后,应保证含有多项式的因式中再无公因式.
练习3:
(1)24a3m-18a2m2;
(2)5y2-15y+5;
(3)28x3-14x2+7x.
例3:
因式分解.
【设计意图】例3是对于首项是带有负号的多项式分解因式,多项式第一项的系数是负数,通常先提出“-”号,且括号内各项都要变号.
练习4:
(1)-7ab+49ab2c;
(2)-6ax2+9axy-3a;
(3)-2a3b2-ab3c+3abc.
例4:
把多项式2a(b+c)-3(b+c)分解因式.
【设计意图】例4的公因式是多项式,通过这一例题的教学,提高学生对“公因式”的认识可以是单项式,也可以是多项式,增强对提公因式法分解因式的本质认识.
练习5:
(1)4m(n-3)+2(n-3);
(2)2a(y-x)-3b(x-y);
(3)a(a2+b2)-c(a2+b2).
(四)课时小结,知识分享
通过这节课的学习,你有哪些收获?
和大家一起分享吧!
1.什么叫因式分解?
2.确定公因式的方法?
3.提公因式法分解因式步骤?
4.提公因式法因式分解中的四个注意?
【设计意图】通过小结,使学生梳理本节课所学的内容,使学生进一步理解因式分解、公因式的概念,总结应用提公因式法分解因式的步骤,建立知识间的练习,促进学生数学思维品质的优化.
(五)作业
基础检测:
1.因式分解
(1);
(2)-12a2b+24ab2;
(3)xy-x2y2-x3y3;
(4).
2.已知a-b=3,ab=-1,求a2b-ab2.
3.若x2+3x-2=0,求2x3+6x2-4x的值.
4.先分解因式,再求值:
4a2(x+7)-3(x+7),其中a=-5,x=3.
能力提升
(2);
(3);
(4).
2.先化简,再求值,其中,x=.3.已知方程组,求代数式的值.