课程设计数字电子钟设计报告文档格式.docx

上传人:b****4 文档编号:16289208 上传时间:2022-11-22 格式:DOCX 页数:13 大小:745.96KB
下载 相关 举报
课程设计数字电子钟设计报告文档格式.docx_第1页
第1页 / 共13页
课程设计数字电子钟设计报告文档格式.docx_第2页
第2页 / 共13页
课程设计数字电子钟设计报告文档格式.docx_第3页
第3页 / 共13页
课程设计数字电子钟设计报告文档格式.docx_第4页
第4页 / 共13页
课程设计数字电子钟设计报告文档格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

课程设计数字电子钟设计报告文档格式.docx

《课程设计数字电子钟设计报告文档格式.docx》由会员分享,可在线阅读,更多相关《课程设计数字电子钟设计报告文档格式.docx(13页珍藏版)》请在冰豆网上搜索。

课程设计数字电子钟设计报告文档格式.docx

(安阳师范学院物理与电气工程学院,河南安阳455002)

摘要:

本数字电子钟,主要是依据《数字电子技术》的知识设计的。

它主要包括秒脉冲电路、时间计数电路、译码驱动电路、显示电路。

其中,秒脉冲电路是由555定时器、74LS90、电阻、电容等组成的;

时间计数电路采用的是两块74LS160级联组成二十四进制和六十进制计数器来实现时、分、秒的计时的。

关键词:

数字钟;

调试;

74LS160;

74LS48;

74LS90;

555定时器

1引言

本设计主要采用的是计数器、门电路等器件,虽然使用的器件数量比较多,但相对来说不是很复杂;

本设计的核心价值是它让我把一个具体的电路先进行整体抽象,在分模块具体落实。

对于具体模块电路的构成,实现方式不同。

本设计的优点是所需要的元器件比较常见,总体实现起来比较方便,缺点是设计当中首先是555定时器产生的1000Hz的信号不是标准的,所以经分频后的1秒脉冲也不是标准的1秒脉冲;

再就是本设计的校正电路,太过于理想化,不能在实验中得出预想的结果。

2技术要求

时钟显示功能,能够十进制显示“时”,“分”,“秒”,显示时间从00:

00:

00到23:

59:

59;

具有快速校准时间的功能。

3总设计方案

图1总设计原理框图

由上图的总设计原理框图可知,该设计大概可以分为四个部分:

秒脉冲产生部分、计数部分、译码显示部分、校正部分。

在秒脉冲产生部分中,可以用振荡器或者555定时器来实现,为了保证数字钟的准确性,应该优先选用振荡器,但是个人技术能力有限,所以我选了用555定时器和R、C组成的多谐振荡器与三块74LS90分频器来产生秒脉冲;

在计数电路中,我选用了74LS160这种十进制计数器,因为用两块74LS160可以级联组成60进制和24进制,用起来比较方便;

在译码显示电路中,我采用74LS48七段显示译码器和七段显示数码管组成了数字钟的显示部分;

在校时电路中,我用的是手动校时的方式,通过按钮控制74LS160的时钟引脚来控制计数(但是结果证明这种方法不是太好)。

通过以上四部分的共同作用,最终达到该项设计的要求,设计出来一个数字电子钟。

4设计原理

4.1秒脉冲电路

振荡器是数字钟的核心。

振荡器的稳定度及频率的精确度决定了数字钟计时的精确程度,一般来说555产生出来的脉冲不太稳定,但是由于某种原因,本设计采用555定时器。

图2所示为用555定时器设计的振荡器,按照图中给出的参数即可从555的3引脚输出1Kz的脉冲。

图2是采用3块74LS90来分频的分频电路,每块74LS90对收到的信号进行10分频三块级联,这样最后一个芯片的11引脚得到的就是1Hz的脉冲,即可做为秒的脉冲给数字钟输入标准脉冲。

图2振荡电路

图3分频电路

555定时器及74LS90的管脚图与功能表如下:

MR'

R

S'

V0

DIS

1

接地

Qn

保持

X

开路

图3555定时器的管脚图与功能表

图474LS90的管脚图与功能表

4.2时间计数电路

众所周知,数字钟的“时”,“分”,“秒”分别为二十四(12也可以)、六十、六十进制的计数器。

它们都可以用两个“可预置四位二进制异步清除”计数器来实现。

利用74LS160芯片的预置数功能,也可以构成不同进制的计数器。

因为一片74LS160内含有一个四位二进制异步清除计数器,因此用两片74LS160就可以构成二十四和六十进制计数器了。

如图7,其中74LS160芯片的引脚中CP为时钟脉冲输入端,D0、D1、D2、D3为预置数端,为置数控制端,为异步复位端,二者均为低电平有效;

Q0、Q1、Q2、Q3为计数器的输出端。

(1)秒计数和分计数都是六十进制,所以将它们归在一起。

当计数器记到59时,再来一个脉冲,计数器进位输出变为1,送到高一级的计数电路中去,同时自身清0。

下面是六十进制计数器具体的工作原理:

本计数器采用的是并行进位整体置数方式。

当分频电路产生1Hz的信号时,信号被加到U1、U2的CLK端,但刚开始U2的ET和EP端为高电平U2工作(计数),而U1的ET和EP端受U2进位输出端CO控制,刚开始计数时,U2进位输出端为0,所以U1不工作,当U2计数为9时,U2进位输出为1,此时U1计数。

当下一个脉冲到来后,U2跳变为0,此时进位输出为0,U1又不工作,一直等到U2计数记到9时,U1才计数,每输入十个脉冲信号,U1记一次数。

当U1计数记到5时(为0101时)且U2为9时(为1001时)即U2的14脚11脚为高电平且U1的14脚12脚为高电平时,相应的脚接到四输入与非门中,此时四个脚输入全为高电平,与非门输出为低电平,与非门的输出接到U1、U2的置数端,置数端接入低电平有效,此时U1、U2置数工作,U1、U2置数输入为相应芯片上的预置数输入端的值,由于U1、U2的预置数输入端接地,即预置数为0000,此时计数器清零,又开始重新计数。

下图为六十进制计数器的原理图。

图5秒、分计数器电路

(2)时计数采用二十四进制计数器,二十四进制计数器的工作原理与六十进制计数器的工作原理相似,只不过与非门采用的是三输入与非门,因为二十四进制计数器是在U2计数为3,且U1计数为2时进位的,此时只需要三个引脚的逻辑值即可,二十四进制计数器的计数脉冲是分进位的进位脉冲信号。

三输入与非门的三个引脚分别接U2的13、14脚和U1的13脚,当U2的计数为3时,即U2的13、14脚为高电平并且U1的13脚都为高电平时,74LS20的三个输入端(74LS20为四输入与非门这里将其中的两个引脚接在一起,构成三输入与非门)的输入都为1,此时与非门的输出端为0,再将与非门的输出端接到置数端进行置数处理。

当U1、U2进行置数时,U1、U2全被置成0,此时计数器清零,可以重新开始计数。

下图为二十四进制计数器的原理图。

图5时计数器电路

74LS160及74LS20的管脚图与功能表如下:

图674LS160的管脚图及功能表

图774LS20管脚图及功能表

4.3译码驱动电路

译码驱动电路采用的是74LS48芯片,它的输入信号为单个74LS160计数器的输出信号,74LS48电路中的灯测测试输入端,灭灯输入、灭零输出和灭零输入均为无效状态,故其相应的引脚接高电平,表示上述功能不工作。

74LS48输出端接显示译码器的相应管脚。

译码器输出端分别接相应的显示电路输入端。

下图为译码驱动显示电路的原理图。

图8译码驱动电路

74LS48的管脚图及功能表:

图974LS48的管脚图及功能表

4.3显示电路

本设计采用共阴极数码管,CK接低电平,7脚为数码管的小数点,本设计中没用到,不需要显示,所以接地即可。

图10为数码管引脚图,图11为显示电路原理图。

图10数码管引脚图图11显示电路

4.4校正电路

下图是本设计所采用的校正电路原理图,当J1按下时就证明准备好了时间的校正,然后,J1按着不动,在按J2没按一次时(分)就增加1。

(实验证明:

此电路不能实现)

图12校正电路

5总电路

本电路是以555定时器组成多谐振荡器作为频率发声器,多谐振荡产生1000Hz的震荡波,经过74LS90组成的分频器分频,分解成1Hz的脉冲波,随后经过秒计数器,秒计时器是六十进制计数器,当计数器计数到60时产生进位脉冲,到分计数器。

分计数器也是六十进制计数器,当分计数器计数到60时,再次产生更高一级的进位脉冲,脉冲送到时计数器,实现了分向时的进位。

当需要进行校正时或分时,打开对应的开关,进行相应的校正,此时计数进位脉冲无效。

下图为总电路原理图。

图13总电路

图14总数字钟电路PCB图

图15脉冲电路PCB图

6设计心得

在学习《数字电子技术基础》这门课时我就对计数器(芯片)产生了浓厚的兴趣,但是由于当时的专业知识有限只能学习有关它的理论知识,没能在实践中真正的感知它、了解它的功能及作用。

为了进一步的了解并掌握计数器(芯片)的功能及其在应用中的性能,基于对计数器(芯片)的学习,我用74LS160设计了这块数字电子钟。

虽然,它不像市面上买的时钟那样有很全面的附加功能,但是作为一块看时间的时钟,它是足够了。

这样即使我的所学得到了所用,又让我在制作的过程中学到了一些在书本中学不到的知识.

7参考文献

(1)童诗白、华成英主编,《模拟电子技术基础》北京,高等教育出版社,第四版

(2)阎石主编《数字电子技术基础》,北京,高等教育出版社,第五版

(3)梁恩主、梁恩维编,《Protel99SE电路设计与仿真应用》清华大学

(4)何希才编著,《新型电子电路应用实例》科学技术出版社,第一版

(5)谢自美主编,《电子线路设计·

实验·

测试》华中科技大学出版社,第三版

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1