小学奥数思维训练还原问题与年龄问题通用版Word下载.docx

上传人:b****6 文档编号:16229638 上传时间:2022-11-21 格式:DOCX 页数:20 大小:155.06KB
下载 相关 举报
小学奥数思维训练还原问题与年龄问题通用版Word下载.docx_第1页
第1页 / 共20页
小学奥数思维训练还原问题与年龄问题通用版Word下载.docx_第2页
第2页 / 共20页
小学奥数思维训练还原问题与年龄问题通用版Word下载.docx_第3页
第3页 / 共20页
小学奥数思维训练还原问题与年龄问题通用版Word下载.docx_第4页
第4页 / 共20页
小学奥数思维训练还原问题与年龄问题通用版Word下载.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

小学奥数思维训练还原问题与年龄问题通用版Word下载.docx

《小学奥数思维训练还原问题与年龄问题通用版Word下载.docx》由会员分享,可在线阅读,更多相关《小学奥数思维训练还原问题与年龄问题通用版Word下载.docx(20页珍藏版)》请在冰豆网上搜索。

小学奥数思维训练还原问题与年龄问题通用版Word下载.docx

20.学生问老师多少岁,老师说:

“当我像你这么大时,你刚5岁;

当你像我这么大时,我已经50岁了.“求老师和学生现在的年龄.

21.有老师和甲、乙、丙三个学生,现在老师年龄恰为三个学生年龄之和;

9年后,老师年龄为甲、乙两学生年龄之和;

又过了3年,老师年龄为甲、丙学生年龄之和;

再过3年,老师年龄为乙、丙两学生年龄之和,求现在各人的年龄.

22.1年前,父母的年龄和是兄弟二人年龄和的7倍;

4年后,父母的年龄和是兄弟二人年龄和的4倍,已知爸爸比妈妈大2岁,妈妈今年多少岁?

23.口渴的三个和尚分别捧着一个水罐,最初,老和尚的水最多,并且有一个和尚没水喝,于是,老和尚把自己的水全部平均分给了大、小两个和尚;

接着,大和尚又把自己的水全部平均分给了老、小两个和尚;

然后,小和尚又把自己的水全部平均分给了另外两个和尚.就这样,三人轮流谦让了一阵,结果太阳落山时,老和尚的水罐里有10升水,小和尚的水罐则装着20升水.请问:

最初大和尚的水罐里有多少升水?

24.甲和乙各有若干块糖,甲的糖数比乙少,每次操作由糖多的人给糖少的人一些糖,使其糖数增加1倍;

经过2005次这样的操作以后,甲有10块糖,乙有8块糖,请问:

两个人原来分别有多少块糖?

25.哥哥对弟弟说:

“你长到我这么大的时候,我恰好获得博士学位;

我在你这么大的时候,你刚刚上幼儿园.”已知哥哥和的弟弟现在的年龄和为32岁,哥哥获得博士学位的年龄是弟弟上幼儿园年龄的7倍,求哥哥获得博士学位的年龄是  岁.

26.小明跟爷爷聊天,爷爷对小明说:

“当我的岁数是你爸现在的岁数时,你才5岁呢.”小明对爷爷说:

“我的岁数是您现在的岁数时,我爸都89岁了.”请问:

小明的爸爸今年多少岁?

27.1996年时,父母的年龄之和是78岁,兄弟二人的年龄之和是17岁;

4年后,父亲年龄是弟弟年龄的4倍,母亲年龄是哥哥年龄的3倍,试问:

当父亲年龄是哥哥年龄的3倍时是公元多少年?

28.(2011•汕头)全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁.四年前,他们全家年龄之和是58岁,现在是73岁.问:

现在各人的年龄分别是多少?

29.老师在黑板上写了三个不同的整数,小明每次先擦掉第一个数,然后在最后写上另两个数的平均数,如此做了7次,这时黑板上三个数的和为159.如果开始时老师在黑板上写的三个数之和为2008,且所有写过的数都是整数.请问:

开始时老师在黑板上写的第一个数是多少?

30.(2011•东莞模拟)甲、乙、丙三人现在的年龄之和是113岁.当乙的年龄是丙的年龄的一半时,甲的年龄是17岁,那么乙现在的年龄是  岁.

参考答案

1.1.

【解析】

试题分析:

从最后的结果往前逆推,结果是6,是一个数除以6得到的,不除以6,这个数应该是6×

6=36;

36是一个数减6得来的,那么这个数应该是36+6=42;

42是一个数乘以6得来的,那么这个数应该是42÷

6=7;

7是由某数加上6得来的,因此,某数是7﹣6=1,列式解答即可得到答案.

解:

(6×

6+6)÷

6﹣6

=(36+6)÷

6﹣6,

=42÷

=7﹣6,

=1.

故答案为:

1.

点评:

解答此题的关键是根据题干确定算式的运算顺序.

2.7两酒.

由题意,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,遇到3家酒店,最后喝了8两,酒喝完了,所以最后剩余8两酒;

则遇到第三家酒店时是8÷

2=4两酒,遇到第二家酒店时是(4+8)÷

2=6两酒,遇到第一家酒店时,原来酒葫芦里有酒(6+8)÷

2=7两;

据此解答.

最后喝了8两,酒喝完了,所以最后剩余8两酒,

2=4(两),

(4+8)÷

2=6(两),

(6+8)÷

2=7(两),

答:

原来酒葫芦里有7两酒.

本题需要逆着思考,从最后的结果向前根据数量关系,求出上一步的结果,一步步的推,进而求解.

3.原来这人身上有44元,箱子里有84元.

由题意,这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,即第二次回来时,他身上有64元,箱子里也有64元,由此一步步向前逆推,则第二次回来前,他身上有64+32=96元,箱子里有64÷

2=32元;

第二次过去前,他身上有96÷

2=48元,箱子里有32+48=80元;

第一次回来前,他身上有48+40=88元,箱子里有80÷

2=40元;

第一次过去前,他身上有88÷

2=44元,箱子里有40+44=84元;

第二次回来时,他身上有64元,箱子里也有64元;

第二次回来前,他身上有64+32=96(元),箱子里有64÷

2=32(元);

2=48(元),箱子里有32+48=80(元);

第一次回来前,他身上有48+40=88(元),箱子里有80÷

2=40(元);

2=44(元),箱子里有40+44=84(元);

原来这人身上有44元,箱子里有84元.

4.一开始第一棵树上有12只鸟,第二棵树上有23只鸟,第三棵树上有13只鸟.

应先从最后结果出发,最后三棵树上鸟的只数都是48÷

3=16(只);

则第三棵树上没有飞走10只鸟时是16+10=26只,根据“第二棵树上又有与第三棵树同样数目的鸟飞到了第三棵树上”可知第三棵树上原来有26÷

2=13只,从第二棵树上飞到第三棵树上的有13只,根据“第三棵树上又有10只鸟飞到了第一棵树上”,这时是16只,可知这10只鸟没有飞到第一棵树之前第一颗树上是16﹣10=6只,因为“第一棵树上有一半的鸟飞到了第二棵树上”,所以第一棵树上原来有6×

2=12只,由此用总只数分别减去第一、二棵树上原有的只数就是第二棵树上原有鸟的只数;

最后三棵树上各有鸟:

48÷

第三棵树上原有:

(16+10)÷

2=13(只);

第一棵树上原有:

(16﹣10)×

2=12(只);

第二棵树上原有:

48﹣12﹣13=23(只);

一开始第一棵树上有12只鸟,第二棵树上有23只鸟,第三棵树上有13只鸟.

5.再过三年

根据题干可得,张伯伯与小方的年龄差是45﹣9=36岁,当张伯伯的年龄是小方年龄的4倍,张伯伯与小方的年龄差是小方年龄的4﹣1=3倍,由此即可求出此时小方的年龄是36÷

3=12岁,再减去小方现在的年龄就是要求的问题.

年龄差:

45﹣9=36(岁),

张伯伯的年龄是小方年龄的4倍时,小方的年龄是:

36÷

(4﹣1)=12(岁),

12﹣9=3(年);

再过三年,张伯伯的年龄是小方年龄的4倍.

抓住二人的年龄差永远不变,是解决此类问题的关键.

6.2岁.

他父母的年龄差是不变的,设今年小明的年龄是x岁,那么父母的年龄差也是x岁,4年后小明的年龄就是(4+x)岁,根据4年后,小明的年龄等于他父母年龄差的3倍,列出方程求解即可.

设今年小明的年龄是x岁,由题意得:

3x=x+4

2x=4

x=2

小明今年2岁.

解决本题根据年龄差不变,得出4年后小明的年龄是现在年龄的3倍,从而解决问题.

7.爸爸25岁,儿子5岁.

设现在儿子的年龄是x岁,那么爸爸现在的年龄5x岁,15年后,儿子的年龄是(x+15)岁,爸爸的年龄是(5x+15)岁,根据此时爸爸的年龄是儿子年龄的2倍列出方程求解.

设儿子现在的年龄是x岁,由题意得:

(x+15)×

2=5x+15

2x+30=5x+15

3x=15

x=5

爸爸的年龄是:

5x=5×

5=25(岁)

现在爸爸25岁,儿子5岁.

本题先设出儿子现在的年龄,用儿子现在的年龄表示出爸爸和儿子15年后的年龄,再根据它们的倍数关系列出方程求解.

8.20岁.

设哥哥今年年龄为x岁,由“兄弟两今年的年龄和是32岁,”得出弟弟今年年龄为(32﹣x)岁,当哥哥像弟弟现在这样大时,即哥哥的年龄为(32﹣x)岁时,哥哥增长了x﹣(32﹣x)岁,这时弟弟的年龄为(32﹣x)﹣[x﹣(32﹣x)]岁,再根据“哥哥的年龄是当时弟弟年龄的3倍”列出方程解答即可.

设哥哥今年年龄为x,弟弟今年年龄为60﹣x岁,

[(32﹣x)﹣x+(32﹣x)]=32﹣x,

[64﹣3x]=32﹣x

8x=160

x=20.

哥哥今年20岁.

关键是设出一个未知数,另外的未知数用设出的字母表示,再找出数量关系等式,由等式列出方程解决问题.

9.老师今年27岁,学生15岁.

根据年龄差不会变这一特性,从年龄差入手,年龄差+3=学生现在的年龄,年龄差+老师现在的年龄=39,所以老师+学生=42,设老师今年岁数为x,则学生的岁数是42﹣x岁,再根据年龄差+老师现在的年龄=39,列出方程解决问题.

设老师今年x岁,因为老师和学生的年龄和是:

39+3=42(岁),则学生的岁数是42﹣x岁;

所以,x﹣(42﹣x)+x=39

3x﹣42=39

3x=42+39

3x=81

x=27;

42﹣27=15(岁);

这位老师今年27岁,学生15岁.

关键是根据年龄差不会变这一特性,从年龄差入手,找出数量关系等式,列出方程解决问题.

10.6年后.

由于过1年,每个人都增长1岁,今年费叔叔的年龄比小悦、冬冬、阿奇三人年龄的总和还多6岁,若过1年,则费叔叔的年龄增加1岁,小悦、冬冬、阿奇三人年龄的总和要增加3岁,即每过1年,小悦、冬冬、阿奇三人年龄的总和就比费叔叔的年龄多增加2岁;

今年,费叔叔的年龄比小悦、冬冬、阿奇三人年龄的总和还多6岁,要求多少年后,费叔叔的年龄将比他们三人年龄的总和少6岁,则求出几个2岁是(6+6)岁,就是几年后费叔叔的年龄将比他们三人年龄的总和少6岁;

由于过1年,每个人都增长1岁,过1年,则费叔叔的年龄增加1岁,小悦、冬冬、阿奇三人年龄的总和要增加3岁,

即每过1年,小悦、冬冬、阿奇三人年龄的总和就比费叔叔的年龄多增加2岁;

(6+6)÷

2=6(年);

6年后,费叔叔的年龄将比他们三人年龄的总和少6岁.

解答此题要明确:

过1年,每个人都增长1岁,过1年,则费叔叔的年龄增加1岁,小悦、冬冬、阿奇三人年龄的总和要增加3岁.

11.2.

根据题意,把这个数设为x,列方程解答即可.

设这个数为x,得

[(x+37)×

18﹣323]÷

23﹣11=16

[18x+666﹣323]÷

18x+343=16×

23+11

18x=36

x=2

这个数原来是2.

高的此题的关键是根据题意,列方程解进而求解.

12.24.

从最后剩下的4个桃子入手进行逆推,“最后第三只猴子吃了三个桃子并摘下了剩下桃子的一半.这时树上刚好还有四个桃子”,这时第三只猴子没吃之前有桃子4×

2+3=11个桃子,这些11个桃子是“三只猴子吃了两个桃子并摘下了剩下桃子的一半”后剩下的,所以原来的桃子数是11×

2+3=24个.据此解答.

(4×

2+3)×

2+2

=(8+3)×

=11×

=22+2

=24(个)

原来树上一共有24个桃子.

本题属于逆推问题,解答的关键是从最后的结果进行逆推,先求出最后第三只猴子没吃前的桃子数,进而求出总桃子数.

13.16块.

设最初弟弟准备挑x块砖,则哥哥最初挑(26﹣x)块,第一次抢砖:

弟弟(x÷

2)块,哥哥(26﹣x÷

2)块,第二次抢砖:

弟弟(

+13)块,哥哥(13﹣

)块,第三次抢砖:

+8)块,哥哥(18﹣

)块,再根据“哥哥比弟弟多挑2块”,列方程解答即可.

设最初弟弟准备挑x块砖,则哥哥最初挑(26﹣x)块,

第一次抢砖:

2)块,

第二次抢砖:

)块,

第三次抢砖:

+8)块哥哥(18﹣

18﹣

﹣(

+8)=2,

10﹣

=2,

20﹣x=4,

x=20﹣4,

x=16,

最初弟弟准备挑16块砖.

解答本题的关键是,根据题意,找出每次哥哥和弟弟抢砖之后,哥哥和弟弟砖的块数,再根据题中的数量关系,列方程解答即可.

14.甲原来有7块糖,乙原来有10块糖.

第三次操作后,甲有5块糖,乙有12块糖,那么这次操作是甲把糖给了乙,那么这之前,乙有12÷

2=6块糖,甲有:

5+6=11块糖;

第二次操作如果是把乙的糖给甲,那么11不是2的倍数,所以不会增加1倍,所以仍是有甲给乙,那么第二次操作前,乙就有6÷

2=3块糖,甲有11+3=14块糖;

由于14是2的倍数,所以第一次操作是把乙的糖给甲,那么甲原来有14÷

2=7(块),乙有3+7=10(块).

第三次操作前,乙有:

12÷

2=6(块)

甲有5+6=11(块);

6是2的倍数,而11不是2的倍数,所以第二次操作仍是甲给乙,

第二次操作前,乙有:

2=3(块),

甲有:

11+3=14(块);

14是2的倍数,所以第一次操作是乙给甲,

那么原来甲有:

14÷

2=7(块)

乙有:

3+7=10(块)

甲原来有7块糖,乙原来有10块糖.

解决本题运用逆推的方法求解,关键是判断每一次操作都是谁给谁.

15.55,19,7.

三人最后一样多,所以都是81÷

3=27元,然后我们倒推还原:

(1)甲和乙把钱还给丙,根据题意,每人增加2倍,就应该是原来钱数的3倍,所以甲和乙都是27÷

3=9(元),丙是81﹣9﹣9=63(元);

(2)甲和丙把钱还给乙,这时甲有9÷

3=3(元),丙有63÷

3=21(元),乙有81﹣3﹣21=57(元);

(3)最后是乙和丙把钱还给甲,这时乙有57÷

3=19(元),丙有21÷

3=7(元),甲有81﹣19﹣7=55元(元).

经过逐步推算,解决问题.

甲和乙把钱还给丙:

甲和乙都是:

27÷

3=9(元),

丙是:

81﹣9﹣9=63(元);

甲和丙把钱还给乙:

3=3(元),

丙有:

63÷

3=21(元),

81﹣3﹣21=57(元);

乙和丙把钱还给甲:

57÷

3=19(元),

21÷

3=7(元),

81﹣19﹣7=55元(元).

三人原来的钱分别是甲55元,乙19元,丙7元.

55,19,7.

解决此类问题的关键是抓住最后得到的数量,从后向前进行推算,根据逆运算思维进行解答.

16.15年后,父亲年龄是张明年龄的2倍;

5年前,父亲年龄是张明年龄的4倍.

根据“父亲今年45岁,张明今年15岁,”求出父子的年龄差是(45﹣15)岁,由于此年龄差不会改变,所以利用差倍公式,分别求出当父亲的年龄是张明年龄的2倍及当父亲年龄是张明年龄的4倍时张明的年龄,由此进一步解决问题.

(1)父子的年龄差是:

45﹣15=30(岁),

张明的年龄:

30÷

(2﹣1)

=30÷

1

=30(岁),

30﹣15=15(年),

(2)张明的年龄是:

(4﹣1)

3

=10(岁),

15﹣10=5(年),

15年后,父亲年龄是张明年龄的2倍;

解答此题的关键是,根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出张明相应的年龄,由此解决问题.

17.15年后.

设今年女儿的年龄是x岁,则父亲年龄是3x岁,12年前,女儿的年龄是x﹣12岁;

父亲年龄3x﹣12或表示为(x﹣12)×

11岁,由此求出今年父亲和女儿的年龄,进而求出几年后父亲年龄是女儿年龄的2倍.

11岁;

所以3x﹣12=(x﹣12)×

11

3x﹣12=11x﹣132

8x=120

x=15;

父亲的年龄是3×

15=45(岁)

年龄差是:

45﹣15=30(岁)

所以当女儿30岁,父亲60岁时;

父亲年龄是女儿年龄的2倍;

而30﹣15=15(年)

所以15年后父亲年龄是女儿年龄的2倍;

15年后父亲年龄是女儿年龄的2倍.

关键是根据题意设出未知数,求出父亲和女儿今年的年龄,进而解决问题.

18.哥哥现在的年龄是10岁;

弟弟现在的年龄是6岁.

设弟弟今年x岁,则弟弟去年是x﹣1岁;

前年是x﹣2岁;

哥哥今年y岁,则去年是y﹣1岁,前年是y﹣2岁;

再根据去年哥哥的年龄是明年兄弟二人年龄和的一半,得出y﹣1=

(x+1+y+1);

再由“前年哥哥的年龄是弟弟的2倍”,得出y﹣2=2(x﹣2),由此可列出方程解决问题.

y﹣1=

y﹣x=4

y﹣2=2(x﹣2),

2x﹣y=2,

所以x=6,

y=10;

哥哥现在的年龄是10岁;

弟弟现在的年龄是6岁.

此题等量关系较复杂,要求学生要审清题意找准等量关系,列出方程解答.

19.24岁.

设今年弟弟的年龄是x岁,则哥哥的年龄是2x岁,当弟弟长到哥哥现在的年龄时,父亲的年龄是48+x岁,再根据父亲的年龄恰好等于兄弟俩年龄之和,得出48+x=2x+x+2x,由此解方程即可.

设今年弟弟的年龄是x岁,则哥哥的年龄是2x岁,

48+x=2x+x+2x

4x=48

x=12,

12×

2=24(岁)

今年哥哥24岁.

20.老师今年35岁,学生今年20岁.

假设年龄差为x岁,学生现在x+5岁,老师现在2x+5岁;

根据“当你像我这么大时,我已经50岁”可列关系式:

老师现在的年龄+年龄差=50;

据此列方程解答求出年龄差,然后再求出老师现在的年龄就比较容易了.

设年龄差为x,学生现在x+5,老师现在2x+5;

2x+5+x=50,

3x=45,

x=15,

老师现在:

2x+5=2×

15+5=35(岁);

老师今年35岁,学生今年20岁.

本题关键是抓住年龄差不变,难点是理解两次比较年龄中隐含的数量关系.

21.现在老师的年龄是36岁,甲的年龄是15岁,乙的年龄是12岁,丙的年龄是9岁.

设现在甲、乙、丙三个学生的年龄分别为x岁,y岁,z岁;

则老师现在的年龄是x+y+z(岁);

所以根据“9年后,老师年龄为甲、乙两学生年龄之和”,得出x+y+z+9=x+y+9+9,由此求出丙的年龄;

再根据又过了3年,老师年龄为甲、丙学生年龄之和;

得出x+y+z+9+3=x+z+9+3+9+3,由此求出乙的年龄;

同理,再根据再过3年,老师年龄为乙、丙两学生年龄之和,求出甲的年龄.

x+y+z+9=x+y+9+9

z=9

x+y+z+9+3=x+z+9+3+9+3

y=12

x+y+z+9+3+3=y+z+9+3+3+9+3+3

x=15

9+12+15=36(岁)

现在老师的年龄是36岁,甲的年龄是15岁,乙的年龄是12岁,丙的年龄是9岁.

关键是根据题意,找出数量关系式,列出方程

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 环境科学食品科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1