设计电子产品中产生EMI和EMC问题原因分析及解决Word文件下载.docx
《设计电子产品中产生EMI和EMC问题原因分析及解决Word文件下载.docx》由会员分享,可在线阅读,更多相关《设计电子产品中产生EMI和EMC问题原因分析及解决Word文件下载.docx(54页珍藏版)》请在冰豆网上搜索。
过冲(上冲/下冲)Overshoot/Undershoot
串扰InducedNoise(orcrosstalk)
电磁辐射EMIradiation
1反射信号
在高速电路中,信号的传输如上图所示,如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不可预期效应,使信号轮廓失真。
当失真变形非常显著时可导致多种错误,引起设计失败。
同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。
如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:
过长的走线;
未被匹配终结的传输线,过量电容或电感以及阻抗失配。
2延时和时序错误
信号延时和时序错误表现为:
信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。
过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。
电路设计师必须确定最坏情况下的时间延时以确保设计的正确性。
信号延时产生的原因:
驱动过载,走线过长。
3过冲
过冲来源于走线过长或者信号变化太快两方面的原因。
虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。
4串扰
串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
信号线距离地线越近,线间距越大,产生的串扰信号越小。
异步信号和时钟信号更容易产生串扰。
因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5电磁辐射
EMI(Electro-MagneticInterference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。
EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。
它产生的主要原因是电路工作频率太高以及布局布线不合理。
目前已有进行EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。
最通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。
避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。
1严格控制关键网线的走线长度
如果设计中有高速跳变的边沿,就必须考虑到在PCB板上存在传输线效应的问题。
现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。
解决这个问题有一些基本原则:
如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。
工作频率在50MHz布线长度应不大于1.5英寸。
如果工作频率达到或超过75MHz布线长度应在1英寸。
对于GaAs芯片最大的布线长度应为0.3英寸。
如果超过这个标准,就要通过软件仿真来定位走线.走线的精确长度需物理软件(如:
PADS等)控制.
2合理规划走线的拓扑结构
解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。
当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。
通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(DaisyChain)布线和星形(Star)分布。
对于菊花链布线,布线从驱动端开始,依次到达各接收端。
如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。
在控制走线的高次谐波干扰方面,菊花链走线效果最好。
但这种走线方式布通率最低,不容易100%布通。
实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:
StubDelay<
=Trt*0.1
星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。
采用自动布线器是完成星型布线的最好的方法。
每条分支上都需要终端电阻。
终端电阻的阻值应和连线的特征阻抗相匹配。
这可通过软件仿真计算,得到特征阻抗值和终端匹配电阻值。
3抑止电磁干扰的方法
很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。
其中非常重要的是保证PCB板有很好的接地。
对复杂的设计采用一个信号层配一个地线层是十分有效的方法。
此外,使电路板的最外层信号的密度最小也是减少电磁辐射的好方法,这种方法可采用"
表面积层"
技术"
Build-up"
设计做PCB来实现。
表面积层通过在普通工艺PCB上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低PCB的体积。
PCB面积的缩小对走线的拓扑结构有巨大的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;
同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。
4其它可采用技术
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。
这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好。
这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。
如果环路穿过同一网线其它走线则构成闭环。
两种情况都会形成天线效应(线天线和环形天线)。
天线对外产生EMI辐射,同时自身也是敏感电路。
闭环是一个必须考虑的问题,因为它产生的辐射与闭环面积近似成正比。
要具体实施以上所有的经验方法,人工计算是无法完成的,通过软件仿真和EDA软件控制。
EMC电磁兼容
电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:
一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;
另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
国际电工委员会标准IEC对电磁兼容的定义是:
系统或设备在所处的电磁环境中能正常工作,同时不对其他系统和设备造成干扰。
EMC包括EMI(interference)和EMS(susceptibility),也就是电磁干扰和电磁抗干扰。
EMI,电磁干扰度,描述一产品对其他产品的电磁辐射干扰程度,是否会影响其周围环境或同一电气环境内的其它电子或电气产品的正常工作;
EMS,电磁抗干扰度,描述一电子或电气产品是否会受其周围环境或同一电气环境内其它电子或电气产品的干扰而影响其自身的正常工作。
EMI又包括传导干扰CE(conductionemission)和辐射干扰RE(radiationemission)以及谐波harmonic。
EMS又包括静电抗干扰ESD,射频抗扰度EFT,电快速瞬变脉冲群抗扰度,浪涌抗扰度,电压暂降抗扰度Dip,等等相关项目。
一、EMC工程师必须具备的八大技能
EMC工程师需要具备那些技能?
从企业产品需要进行设计、整改认证的过程看,EMC工程师
必须具备以下八大技能:
1、EMC的基本测试项目以及测试过程掌握;
2、产品对应EMC的标准掌握;
3、产品的EMC整改定位思路掌握;
4、产品的各种认证流程掌握;
5、产品的硬件硬件知识,对电路(主控、接口)了解;
6、EMC设计整改元器件(电容、磁珠、滤波器、电感、瞬态抑制器件等)使用掌握;
7、产品结构屏蔽设计技能掌握;
8、对EMC设计如何介入产品各个研发阶段流程掌握。
二、EMC常用元件介绍
共模电感
由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!
这里就给大家简单介绍一下共模电感的原理以及使用情况。
共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。
原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。
因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:
1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。
4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。
另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。
磁珠
在产品数字电路EMC设计过程中,我们常常会使用到磁珠,那么磁珠滤波地原理以及如何使用呢?
铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。
铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。
在高频情况下,他们主要呈电抗特性比并且随频率改变。
实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。
实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。
铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。
铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。
铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。
在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;
并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现