废液中和控制系统设计课案Word格式.docx

上传人:b****5 文档编号:16140153 上传时间:2022-11-20 格式:DOCX 页数:13 大小:167.60KB
下载 相关 举报
废液中和控制系统设计课案Word格式.docx_第1页
第1页 / 共13页
废液中和控制系统设计课案Word格式.docx_第2页
第2页 / 共13页
废液中和控制系统设计课案Word格式.docx_第3页
第3页 / 共13页
废液中和控制系统设计课案Word格式.docx_第4页
第4页 / 共13页
废液中和控制系统设计课案Word格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

废液中和控制系统设计课案Word格式.docx

《废液中和控制系统设计课案Word格式.docx》由会员分享,可在线阅读,更多相关《废液中和控制系统设计课案Word格式.docx(13页珍藏版)》请在冰豆网上搜索。

废液中和控制系统设计课案Word格式.docx

通常情况下(25℃、298K左右),当pH<

7的时候,溶液呈酸性,当pH>

7的时候,溶液呈碱性,当pH=7的时候,溶液为中性,而我们所说的水一般指pH=7时的水[3]。

现在的工业废水的酸碱离子浓度总是达不到平衡,所以pH值总是略高或略低,也总是会呈碱性或者是酸性,不能实现pH值=7。

工业废水做好处理,意义很重要。

有毒废水的排放不仅会带来严重的环境污染并威胁着人们的身体健康。

水质污染进入人体,会引起中毒。

工业废水直接流入,会导致水生动植物的死亡,污染地下水。

如果渗入土壤,会影响植物的生长。

废水的处理方法有很多,可以用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源,并且保证环境不受到破坏[4]。

随着的发展,城市水资源短缺的压力越来越大,追究城市水危机的根本原因,人们越来越认识到,是水的社会循环超出了水的自然循环可承载的范围。

因此,只有充分尊重水的自然运动规律,合理地使用水资源,使上游地区的用水循环不影响下游水域的水体功能、社会循环不损害自然循环的客观规律,从而维系或恢复城市乃至流域的良好水环境,才是水资源可持续利用的有效途径。

这就要求我们从“取水-输水-用户-排放”的单向开放型的用水模式转变为“节制地取水-输水-用户-再生水”的反馈式循环流程,提高水的利用效率。

实现这一重大用水模式的转变,加强污水再生利用是关键。

随着科学技术的进步,城市污水已不再是废水,而是一种宝贵的资源。

既然是一种资源,就要最大程度的利用。

提高城市污水的再生利用率,一是可以减少污染物排放,二是节约了有限的水资源。

1.2ph中和控制的研究现状

酸碱中和反应是反应过程中常见的一类反应。

但由于酸碱中和反应中pH值呈现严重的非线性,加之反应大多发生在容器和循环管路中,使得系统存在较大时滞,给pH值控制不仅带来极大困难,而且浪费大量的中和剂。

pH值滴定曲线是非线性曲线,在中和反应过程中,不同的工作点增益相差很大,并且在实际反应过程中还存在着混合、测量等纯滞后因素,增加了控制过程的难度。

为此pH值被公认为最难的控制变量之一。

并且pH值过程滴定曲线的非线性主要表现在中和终点附近,此处滴定曲线的增益很大,此时添加的中和剂略有变化,就能引起pH值较大幅度的变化;

而当pH值远离中和终点时滴定曲线的增益小,只有加入大量的中和剂,才能造成pH值的少量变化[5]。

因此pH值的控制,被认为是一个典型的非线性严重的控制系统。

由于这些特点,pH值控制系统的设计一直是过程控制界的难点和研究热点。

弄清pH中和控制过程的原理,并在计算机上模拟其控制过程及参数扰动的影响,对控制系统的分析与设计具有重要的指导作用[6]。

随着电子技术的发展,很好地提高了仪器的性能和自动化程度。

但是pH值的控制由于其高度非线性而依然存在很多困难。

目前,pH中和过程的控制方法主要包括早期的传统PID控制方法和后期的现代控制方法与智能控制方法。

由于传统控制主要是基于模型的控制,而被控对象越来越复杂,很多不确定性难以用精确的数学方法加以描述。

2课程设计方案

2.1概述

PH计时用来测量费也氢离子浓度的一种仪器。

氢离子浓度越大,PH值越小,但PH计输出的电流就越大。

当液体为酸性时,加入适量碱液使废液中和,此时加酸的阀门关闭。

当废液呈碱性时,此时加入适量酸使废液呈中性,此时加碱的阀门关闭。

现假设废液为酸性的,则用两个电动调节阀,一个粗调,一个细调从而控制加入碱的量。

故此系统采用的是同向分程控制。

本实验的要求如下:

1.测量范围:

0-80℃;

测量范围:

0-10pH;

2.控制点:

0.5pH;

3.最大偏差:

2pH;

2.2分程控制系统设计

2.2.1分程控制概述

一般来说,一台调节器的输出仅操纵一只调节阀,若一只调节器去控制两个以上的阀并且是按输出信号的不同区间去操作不同的阀门,这种控制方式习惯上称为分程控制。

分程控制系统中,根据执行器的气开、气关类型和分程工作范围的不同,分程控制系统可分为四种不同的结构类型。

分为:

气开气开、气关气关同向分程;

气开气关、气关气开异向分程。

现选择气开气开同向分程系统。

一般调节阀分程动作采用同向规律的是为了满足工艺上扩大可调比的要求;

反向规律的选择是为了满足工艺的特殊要求。

2.2.2分程控制系统的设计

(1)不同工况需要不同控制手段:

就废液中和处理来说,刚开始时先将小阀全开,看pH值是否满足7,当pH值不等于7时,即pH值小于7时,开动大阀继续调节,直到pH值等于7或接近于7时停止。

同一个流量控制器需要控制粗调阀和细调阀两个控制阀,因此需要分程控制。

(2)扩大控制阀的可调范围:

为了使控制系统在小流量和大流量时都能够精确控制,应扩大控制阀的可调范围R,R=

,也称为可调比。

(3)分程控制系统中控制阀的泄漏量:

当压力为0.1MPa时定义流量为最大流量;

当压力为0.02MPa时定义流量为最小流量;

当压力为0MPa时定义流量为泄漏量;

分程控制系统工作范围:

一般控制阀工作范围为0.02~0.1MPa,而分程控制系统的两个控制阀分别为:

0.02~0.06MPa对应V2阀和0.06~0.1MPa对应V1阀,为此,可采用阀门定位器或选择不同的控制阀弹簧使控制阀分别工作在不同工作范围。

2.2.3系统总体结构框图设计

分程系统总体结构框图如图1所示。

图1分程系统总体结构框图

2.2.4系统组成总体结构设计

废液中和过程控制系统的总体结构设计如图2所示。

图2废液中和过程控制系统的总体结构设计图

3系统各部分硬件的选型

3.1控制器的选型

3.1.1控制器的PI控制算法

在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。

而PI控制算法它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;

而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PI控制是一种最简单方便的控制算法。

3.1.2控制器的选型

在废液中和过程控制系统中pH值为被控参数,以加碱的多少为控制变量的分程控制系统,根据:

KmKVKPKC>

0,执行器都为气开阀,所以控制器应该为正作用,从而使主控制回路、副控制回路构成一个负反馈系统。

我选择的控制器是上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能调节仪控制挂件为AI-818型,SA-13智能位式调节仪为AI-708型。

AI-818型仪表为PID控制型,输出为4~20mADC信号;

而AI-708型仪表为位式控制型,输出为继电器触点开关量信号。

AI系列仪表通过RS485串口通信协议与上位计算机通讯,从而实现系统的实时监控[7]。

AI系列全通用人工智能调节仪表如下图3所示。

图3AI系列全通用人工智能调节仪表图

3.2执行器的选型

3.2.1执行器简介

执行器是在工业生产过程自动控制系统中,以调节仪表或其他控制装置的信号为输入信号,按一定调节规律调节被控对象输入量的装置。

最常见的执行器是控制阀,也称调节阀。

控制阀由执行机构和调节机构两部分组成。

执行机构可分解为两部分:

将控制器输出信号转换为控制阀的推力或力矩的部件称为力或力矩转换部件,将推力或力矩转换为直线或角位移的部件称为转换部件。

调节机构将位移信号转换为流通面积的变化,改变操纵变量的数值。

3.2.2执行器的选型

根据所使用的能源,执行机构分为气动、电动和液动三类。

气动类型执行机构具有本质安全性,价格低结构简单,应用最广泛;

电动类型执行机构可直接与电动仪表或计算机连接,不需要电动转换环节,但价格稍贵结构复杂,需考虑防爆问题;

液动类型执行机构的推力大,但体积较大,管路复杂。

由于是对废液中和控制,所以选择电动调节阀作为执行器,由于考虑到安全、经济、控制效果好等一些问题所以两个执行器都选择气开阀。

综上我选择罗托克仪表控制科技有限公司旗下的IQM系列智能型电动执行机构。

IQM系列电动执行机构采用图形点阵式液晶显示器,以中文、数字、图形等形式显示执行机构的转矩、阀门开度、限位设定等工作状态和报警。

该执行机构具有自动保护功能和自诊断功能,由于具有隔爆功能,即使在危险区域也无需打开正在工作中的执行机构电气箱盖就可以进行调节、参数检查、故障诊断。

采用现场总线通讯卡,可以构成全分布式计算机协同工作系统,实现远程数据采集、远程通讯和远程诊断与维护[8]。

IQM系列电动执行机的技术指标:

v输入信号:

4mA~20mA;

1VDC~5VDC;

v供电电源:

380VAC/50Hz以及220VAC/50Hz

v基本误差限:

≤1%

v死区:

0.1%~9.9%可调

v环境温度:

-30℃~+90℃

IQM系列电动执行机图片如下图4所示。

图4IQM系列电动执行机图

3.3变送器的选型

3.3.1变送器介绍

变送器是把传感器的输出信号转变为可被控制器识别的信号(或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源)的转换器。

在模拟仪表中,标准信号通常采用4~20mA,1~5V,0~10mA电流或电压信号,20~100kPa气压信号。

传感器和变送器一同构成自动控制的监测信号源。

不同的物理量需要不同的传感器和相应的变送器。

变送器的种类很多,用在工控仪表上面的变送器主要有温度变送器、压力变送器、流量变送器、电流变送器、电压变送器等等。

变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。

与传感器不同的是,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。

3.3.2变送器的选型

本次课设是废液中和过程控制目的是为了控制废液排放的pH值,但实际上我们是通过控制加入碱的流量的多少,从而实现控制废液pH值为7的,所以此次课设我们需选用流量变送器。

现选择的是西森公司旗下的FLDC系列污水流量变送器。

对于其它厂家的变送器来说它有很大优势:

v杂物、纤维不影响测量

v抗菌防粘型电极

v正反计量累计流量

v智能自我诊断功能

除此之外FLDC系列污水流量变送器还有很多特点:

v测量不受流体密度、粘度、温度、压力和电导率变化的影响

v转换器采用新颖励磁方式,功耗低、零点稳定、精确度高。

流量范围大

v转换器可与传感器组成一体型或分离型

v转换器采用表面安装技术,具有自检和自诊断功能

FLDC

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 信息与通信

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1