线性代数(王定江)第2章答案资料下载.pdf
《线性代数(王定江)第2章答案资料下载.pdf》由会员分享,可在线阅读,更多相关《线性代数(王定江)第2章答案资料下载.pdf(28页珍藏版)》请在冰豆网上搜索。
(1)12322106722,214310738AB+=+=12322152122;
214310414AB=
(2)
(2)2()+=AXBXO123221144222().214310524333=+=+=XAB-2-(3)2,2+=+=XYAXYB221123521111
(2)2,310214414333XBA=123221425111
(2)2.214310118333YAB=4.计算下列乘积矩阵:
(1)1(123)211223314;
3=+=
(2)11232(123)246;
3369=(3)2111451710122132175;
4132118503=(4)1232112121212;
132145216814122212112183;
1321214261840=原式(5)20012001000300130010;
001001001=(6)111213112321222323132333();
aaaxxxxaaaxaaax111122133123211222233311322333222111222333122112133113233223()()()();
axaxaxxxxaxaxaxaxaxaxaxaxaxaaxxaaxxaaxx+=+=+原式-3-(7)111213111213212223313233313233212223100001;
010aaaaaaaaaaaaaaaaaa=(8)11121311121213212223212222233132333132323310022102.0012aaaaaaaaaaaaaaaaaaaaa=5.设有3阶方阵111111222222333333,acdbcdacdbcdacdbcd=AB,且|1,|2AB=,求|3|.+AB解:
111111111122222222223333333333344|3|3344344acdbcdabcdABacdbcdabcdacdbcdabcd+=+=+1111111111112222222222223333333333334434444344164844344acdbcdacdbcdacdbcdacdbcdacdbcdacdbcd=+=+16482112.=+=6.已知103100021,021,001301=AB
(1)求,;
ABBA
(2)22()(),;
+ABABAB(3)比较
(1)和
(2)的结果,可以得出什么结论?
解:
(1)1031001003021021343,001301301AB=100103103021021043;
3010013010BA=-4-
(2)103100103100()()021021021021001301001301ABAB+=+203003906042000600,302300609=22103103100100021021021021001001301301AB=106100006043343300;
001601600=(3)因为ABBA,所以22()().ABABAB+7.设矩阵1032=A,求与A可交换的矩阵.解:
设11121222xxXxx=是与A可交换的矩阵,那么AXXA=,又因为1112111221221121122210323232xxxxAXxxxxxx=+1112111212212221222232103232xxxxxXAxxxxx+=+,所以11121112121121122221222232323232xxxxxxxxxxxx+=+,即-5-11111212121121212212222232323322xxxxxxxxxxxx=+=+=+=,求解得1111122122112222033xxxxxxxx=,所以1111222211220,.33xXxxRxxx=8.求下列矩阵的k次幂,其中k为正整数
(1)cossin;
sincos解:
因为2cossincossincossincos2sin2=;
sincossincossincossin2cos23cossincos2sin2cossincos3sin3=;
sincossin2cos2sincossin3cos3猜想cossincossin=sincossincoskkkkk.下面用数学归纳法证明.当2k=时,结论成立.假设kn=时结论成立,那么当1kn=+时,1cossincossincossin=sincossincossincoscos
(1)sin
(1)=,sin
(1)cos
(1)nnnnnnnnn+所以cossincossin=sincossincoskkkkk.
(2)12;
01解:
方法1:
因为-6-212121214122;
0101010101=312141216123;
0101010101=猜想12120101kk=.下面用数学归纳法证明.当2k=时,结论成立.假设kn=时结论成立,那么当1kn=+时,1121212121212
(1);
010101010101nnnn+=所以12120101kk=.方法2:
令0210,0001BE=,那么120210010001BE=+=+,且00,200iBi=,另一方,根据Newton二项公式知0()kkiikiBECBEkB=+=+,所以121002100212010100010001kkkk=+=+=.(3)110011.001解:
因为-7-2110110110121011011011012.001001001001=3110121110133133(31)/2011012011013013.001001001001001=4110133110146144(41)/2011013011014014.001001001001001=猜想1101
(1)201101.001001kkkkk=下面用数学归纳法证明.当2k=时,结论成立.假设kn=时结论成立,那么当1kn=+时,11101
(1)/211011
(1)(11)201101011011.001001001001nnnnnnnnn+=+方法2:
令010100001,010000001BE=,那么110010100011001010001000001BE=+=+,且2010010001001001000000000000B=,-8-3001010000000000001000,000,4000000000000iBBi=,另一方,根据Newton二项公式知20
(1)()2kkiikikkBECBEkBB=+=+,所以110100010001
(1)0110100010002001001000000kkkk=+1
(1)201001kkkk=.9.已知矩阵()11123,1,23=令T,=A求kA,其中k为正整数.解:
因为T1(1,2,3)123,13=T1112132(11213)2123,33321A=所以11111213()332123.3321kTTTTTkTkkAA=L10.证明任何一个方阵都可以表示为一个对称矩阵和一个反对称矩阵之和.证明:
设A为任一方阵.令,2TAAB+=,2TAAC=显然,B为对称矩阵,C为反对称矩阵,并且ABC=+.11.设,AB为n阶对称矩阵,则AB为对称矩阵当且仅当=ABBA证明:
因为AB为对称矩阵,所以(),TTTABABBABA=-9-反之,若,ABBA=那么(),TTTABBABAAB=因此AB为对称矩阵.12.设,AB为n阶矩阵,且A为n阶对称矩阵,证明TBAB也是对称矩阵.证明:
因为T()()TTTTTTBABBABBAB=,所以TBAB也是对称矩阵.13.设A是n阶方阵,且满足T=AAE和|1=A,证明:
|0+=AE.证明:
因为()TTTAEAAAAEAAEAEAAE+=+=+=+=+=+所以0AE+=.14.求下列矩阵的逆矩阵
(1)12;
21解:
11212121213=.
(2)100210;
321解:
1100100210210321121=.(3)122212;
221解:
因为-10-12221227,221=111112
(1)3,21A+=121222
(1)6,21A+=131321
(1)6,22A+=212122
(1)6,21A+=222212
(1)3,21A+=232312
(1)6,22A+=313122
(1)6,12A+=323212
(1)6,22A+=333312
(1)3,21A+=所以112212212122129221221=.(4)120230.005解:
因为1201223055.23005=111130
(1)15,05A+=121220
(1)10,05A+=131323
(1)0,00A+=212120
(1)10,05A+=222210
(1)5,05A+=232312
(1)0,00A+=313120
(1)0,30A+=323210
(1)0,20A+=333312
(1)1,23A+=所以1120151003201230105021050050010501=.方法2:
令-11-1122120230005AOOA=,其中112212,5.23AA=因为1111123232,232121A=221,5A=所以1111122120320230210.0050015AOOA=15.设100230,456=A*A是A的伴随矩阵,求*1().A解:
因为*AAAE=,且18A=,所以*1100230.45611()18AAA=16.设,+ABAB都是可逆矩阵,证明:
11+AB也可逆,且1111()().+=+ABAABB证明:
因为,ABAB+都是可逆矩阵,所以11111111111()()()()()()()().ABAABBEBAABBBBBAABBBBAABBBBE+=+=+=+=即1111()().ABAABB+=+17.解下列矩阵方程:
(1)32213.21314=X解:
因为-12-1321212212323=,所以13221312213435.2131423314556X=
(2)200112010.212201=X解:
因为120000101002022012012=,所以120000112112101002021221222012021X=24121.6243125225=(3)121431.341201=X解:
因为11242134312=,11424112116=,所以11123114423124134011231011112X=1262430421521111.94112232111612126=18.设矩阵300141203=A,已知2=+ABAB,求B.-13-解:
因为22ABABAEB=+=+,所以1
(2)BAEA=,又因为111002001
(2)1211112201402AE=,所以120030060030011
(2)111141242121.2240220