丙烯氨氧化制丙烯腈新工艺.docx

上传人:b****2 文档编号:1605588 上传时间:2022-10-23 格式:DOCX 页数:12 大小:780.89KB
下载 相关 举报
丙烯氨氧化制丙烯腈新工艺.docx_第1页
第1页 / 共12页
丙烯氨氧化制丙烯腈新工艺.docx_第2页
第2页 / 共12页
丙烯氨氧化制丙烯腈新工艺.docx_第3页
第3页 / 共12页
丙烯氨氧化制丙烯腈新工艺.docx_第4页
第4页 / 共12页
丙烯氨氧化制丙烯腈新工艺.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

丙烯氨氧化制丙烯腈新工艺.docx

《丙烯氨氧化制丙烯腈新工艺.docx》由会员分享,可在线阅读,更多相关《丙烯氨氧化制丙烯腈新工艺.docx(12页珍藏版)》请在冰豆网上搜索。

丙烯氨氧化制丙烯腈新工艺.docx

丙烯氨氧化制丙烯腈新工艺

图1丙烯腈的主要用途

一、丙烯氨氧化制丙烯腈生产工艺原理

化学反应

主反应生成丙烯腈,是一个非均相反应;与此同时,在催化剂表面还发生一系列副反应。

主反应:

C3H6+NH3+1.5O2→CH2=CHCN+3H2O△H=-512.5KJ/mol

副反应:

①生成乙腈:

C3H6+1.5NH3+1.5O2→1.5CH3CN+3H2O△H=-522KJ/mol

②生成氢氰酸:

C3H6+3NH3+3O2→3HCN+6H2O△H=-941KJ/mol

③生成二氧化碳:

C3H6+4.5O2→3CO2+3H2O△H=-1925KJ/mol

④生成一氧化碳:

C3H6+3O2→3CO+3H2O△H=-1925KJ/mol

上述副反应中,生成乙腈和氢氰酸是主要的,CO2、CO和H2O可以由丙烯直接氧化得到,也可以由丙烯腈、乙腈等再次氧化得到。

反应过程也副产少量的丙烯醛、丙烯酸、乙醛、丙腈以及高聚物等,因此,工业生产条件下的丙烯氨氧过程十分复杂。

为提高丙烯的转化率和丙烯腈的选择性,研究高性能催化剂是非常重要的。

二、工艺条件

1、催化剂

工业上用于丙烯氨氧化反应的催化剂主要有两大类,一类是复合酸的盐类(Mo系),如磷钼酸铋、磷钨酸铋等;另一类是重金属的氧化物或是几种金属氧化物的混合物(Sb系),例如Sb、Mo、Bi、V、W、Ce、U、Fe、Co、Ni、Te的氧化物,或是Sb—Sn氧化物,Sb—U氧化物等。

我国目前采用的主要是第一类催化剂。

钼系代表性的催化剂有美国Sohio公司的C-41、C-49及我国的MB-82、MB-86。

一般认为,其中Mo—Bi是主催化剂,P—Ce是助催化剂,具有提高催化剂活性和延长催化剂寿命的作用。

按质量计Mo—Bi占活性组分的大部分,单一的MoO3虽有一定的催化活性,但选择性差,单一的Bi03对生成丙烯腈无催化活性,只有二者的组合才表现出较好的活性、选择性和稳定性。

单独使用P—Ce时,对反应不能加速或极少加速,但当它们和Mo—Bi配合使用时,能改进MO—Bi催化剂的性能。

一般来说,助催化剂的用量在5%以下。

载体的选择也很重要,由于反应是强放热,所以工业生产中采用流化床反应器。

流化床反应器要求催化剂强度高,耐磨性能好,故采用粗孔微球型硅胶作为催化剂的载体。

2、原料纯度和配比

(1)原料丙烯是从烃类裂解气或催化裂化气分离得到,其中可能含有的杂质是碳二、丙烷和碳四,也可能有硫化物存在。

丙烷和其它烷烃对反应没有影响,它们的存在只是稀释了浓度。

乙烯在氨氧化反应中不如丙烯活泼,一般情况下少量乙烯存在对反应无不利影响。

但丁烯或更高级烯烃存在会给反应带来不利,因为丁烯或更高级烯烃比丙烯易氧化,会消耗原料中的氧;正丁烯氧化生成甲基乙烯酮(沸点80℃),异丁烯氨氧化生成甲基丙烯腈(沸点90℃),它们的沸点与丙烯腈沸点接近,会给丙烯腈的精制带来困难。

因此,丙烯中丁烯或更高级烯烃含量必须控制。

硫化物的存在,会使催化剂活性下降,应预先脱除。

原料氨的纯度达到肥料级即可;原料空气一般需经过除尘、酸-碱洗涤,除去空气中的固体粉尘、酸性和碱性杂质就可在生产中使用。

(2)丙烯与氨的配比(氨比)在实际投料中发现,当氨比小于理论值1:

1时,有较多的副产物丙烯醛生成,氨的用量至少等于理论比。

但用量过多也不经济,既增加了氨的消耗量,又增加了硫酸的消耗量,因为过量的氨要用硫酸去中和。

因此,丙烯与氨的摩尔比,应控制在理论值或略大于理论值,即丙烯:

氨=1:

1~1.2左右。

图2

(3)丙烯与空气的配比(氧比)丙烯氨氧化所需的氧气是由空气带入的。

目前,工业上实际采用的丙烯与氧的摩尔比约为l:

2~3(大于理论值1:

1.5),采用大于理论值的氧比,主要是为了保护催化剂,不致因催化剂缺氧而引起失活。

反应时若在短时间内因缺氧造成催化剂活性下降,可在540℃温度下通空气使其再生,恢复活性。

但若催化剂长期在缺氧条件下操作,虽经再生,活性也不可能全部恢复。

因此,生产中应保持反应后气体中有2%(按体积计)的含氧量。

但空气过多也会带来一些问题,如使丙烯浓度下降,影响反应速度,从而降低了反应器的生产能力;促使反应产物离开催化剂床层后,继续发生深度氧化反应,使选择性下降;使动力消耗增加;使反应器流出物中产物浓度下降,影响产物的回收。

因此,空气用量应有一适宜值。

图3

(4)丙烯与水蒸气的配比(水比)丙烯氨氧化的主反应并不需要水蒸气参加。

但根据该反应的特点,在原料中加入一定量水蒸气有多种好处,如可促使产物从催化剂表面解吸出来,从而避免丙烯腈的深度氧化;若不加入水蒸气,原料混合气中丙烯与空气的比例正好处于爆炸范围内,加入水蒸气对保证生产安全有利;水蒸气的热容较大,又是一种很好的稀释剂,加入水蒸气可以带走大量的反应生成热,使反应温度易于控制;加入水蒸气对催化剂表面的积炭有清除作用。

另一方面,水蒸气的加入,势必降低设备的生产能力,增加动力消耗。

当催化剂活性较高时,也可不加水蒸气。

因此,发展趋势是改进催化剂性能,以便少加或不加水蒸气。

从目前工业生产情况来看,当丙烯与加入水蒸气的摩尔比为1:

3时,综合效果较好。

3、反应温度

温度是影响丙烯氨氧化的一个重要因素。

当温度低于350℃时,几乎不生成丙烯腈。

要获得丙烯腈的高收率,必须控制较高的反应温度。

温度的变化对丙烯的转化率、丙烯腈的收率、副产物氢氰酸和乙腈的收率以及催化剂的空时收率都有影响。

当反应温度升高时,丙烯转化率、丙烯腈收率都明显地增加,而副产物乙腈和氢氰酸收率则有所增加。

随着温度的升高,丙烯腈收率和乙腈收率都会出现一个最大值,丙烯腈收率的最大值所对应的温度大约在460℃左右,乙腈收率最在值所对应的温度大约在417℃左右。

生产中通常采用在450℃左右进行操作。

图4

4、接触时间

丙烯氨氧化反应是气—固相催化反应,反应是在催化剂表面进行的。

因此,原料气和催化剂必须有一定的接触时间,使原料气能尽量转化成目的产物。

一般说来,适当增加接触时间,可以提高丙烯转化率和丙烯腈收率,而副产物乙腈、氢氰酸和丙烯醛的收率变化不大,这对生产是有利的。

但是,增加接触时间是有限度的,过长的接触时间会使丙烯腈深度氧化的机会增大,反而使丙烯腈收率下降。

同时,过长的接触时间,还会降低设备的生产能力,而且由于尾气中氧含量降低而造成催化剂活性下降,故接触时间一般为5~l0s。

5、反应压力

丙烯氨氧化生产丙烯腈是体积缩小的反应,提高压力可增大反应的平衡转化率。

同时,提高压力也可增加气体的相对密度,相应地可增加设备的生产能力。

但实验表明,加压反应的效果不如常压理想。

这可能是由于加压对副反应更有利,反而降低了丙烯腈的收率。

因此,一船采用常压操作,适当加压只是为了克服后部设备及管线的阻力。

图5

三、生产工艺

1、丙烯腈生产工艺包括:

丙烯腈的合成,产品和副产品的回收,产品和副产品的精制三部分。

工艺流程如图6

图6丙烯氨氧化法合成丙烯腈工艺流程图

1-反应器;2-旋风分离器;3、10、11、16、22、25-塔顶气体冷凝器;4-急冷塔;5-水吸收塔;

6-急冷塔釜液泵;7-急冷塔上部循环泵;8-回收塔;9、20-塔釜液泵;12、17-分层器;13、19-油

层抽出泵;14-乙腈塔;15-脱氰塔;18、24、30-塔底再沸器;21-成品塔;23-成品塔侧线抽出冷却

器;26-吸收塔侧线采出泵;27-吸收塔侧线冷却器;28-氨蒸发器;29-丙烯蒸发器

原料丙烯经蒸发器(29)蒸发,氨经蒸发器(28)蒸发后,进行过热、混合,从流化床底部经气体分布板进入反应器

(1),原料空气经过滤由空压机送入反应器

(1)锥底,原料在催化剂作用下,在流化床反应器中进行氨氧化反应。

反应尾气经过旋风分离器

(2)捕集生成气夹带的催化剂颗粒,然后进入尾气冷却器(3)用水冷却,再进入急冷塔(4)。

氨氧化反应放出大量的热,为了保持床层温度稳定,反应器中设置了一定数量的U型冷却管,通入高压热水,借水的汽化潜热移走反应热。

经反应后的气体进入急冷塔(4),通过高密度喷淋的循环水将气体冷却降温。

反应器流出物料中尚有少量未反应的氨,这些氨必须除去。

因为在氨存在下,碱性介质中会发生一些不希望发生的反应,如氢氰酸的聚合、丙烯醛的聚合、氢氰酸与丙烯醛加成为氰醇、氢氰酸与丙烯腈加成为丁二腈,以及氨与丙烯腈反应生成氨基丙腈等。

生成的聚合物会堵塞管道,而各种加成反应会导致产物丙烯腈和副产物氢氰酸的损失。

因此,冷却的同时需向塔中加入硫酸以中和未反应的氨。

工业上采用硫酸浓度为1.5%(w)左右,中和过程也是反应物料的冷却过程,故急冷塔也叫氨中和塔。

反应物料经急冷塔除去未反应的氨并冷至40℃左右后,进入水吸收塔(5),利用合成气体中的丙烯腈、氢氰酸和乙腈等产物,与其它气体在水中溶解度相差很大的原理,用水作吸收剂回收合成产物。

通常合成气体由塔釜进入,水由塔顶加入,使它们进行逆流接触,以提高吸收效率。

吸收产物后的吸收液应不呈碱性,含有氰化物和其它有机物的吸收液由吸收塔釜泵送至回收塔(8)。

其它气体自塔顶排出,所排出的气体中要求丙烯腈和氢氰酸含量均小于2×l0-5。

丙烯腈的水溶液含有多种副产物,其中包括少量的乙腈、氢氰酸和微量丙烯醛、丙腈等。

在众多杂质中,乙腈和丙烯腈的分离最困难。

因为乙腈和丙烯腈沸点仅相差4℃,若采用一般的精馏法,据估算精馏塔要有150块以上的塔板,这样高的塔设备不宜用于工业生产中。

目前在工业生产中,一般采用共沸精馏。

在塔顶得丙烯腈与水的共沸物,塔底则为乙腈和大量的水。

利用回收塔(8)对吸收液中的丙烯腈和乙腈进行分离,由回收塔侧线气相抽出的含乙腈和水蒸气的混合物送至乙腈塔(14)釜,以回收副产品乙腈;乙腈塔顶蒸出的乙腈水混合蒸汽经冷凝、冷却后送至乙腈回收系统回收或者烧掉。

乙腈塔釜液经提纯可得含少量有机物的水,这部分水再返回到回收塔(8)中作补充水用。

从回收塔顶蒸出的丙烯腈、氢氰酸、水等混合物经冷凝、冷却进入分层器(12)中。

依靠密度差将上述混合物分为油相和水相,水相中含有一部分丙烯腈、氢氰酸等物质,由泵送至脱氰塔(14)以脱除氢氰酸。

回收塔釜含有少量重组分的水送至废水处理系统。

含有丙烯腈、氢氰酸、水等物质的物料进入脱氰塔(15)中,通过再沸器加热,使轻组分氢氰酸从塔顶蒸出,经冷凝、冷却后送去再加工。

由脱氰塔侧线抽出的丙烯腈、水和少量氢氰酸混合物料在分层器(17)中分层,富水相送往急冷塔或回收塔回收氰化物,富丙烯腈相再由泵送回本塔进一步脱水,塔釜纯度较高的丙烯腈料液由泵送到成品塔(21)。

由成品塔顶蒸出的蒸汽经冷凝后进入塔顶作回流,由成品塔釜抽出的含有重组分的丙烯腈料液送入急冷塔中回收丙烯腈,由成品塔侧线液相抽出成品丙烯腈经冷却后送往成品中间罐。

2、丙烯腈生产中的废水和废气处理

丙烯腈在生产过程中会产生大量的含氰废水,这些物质对环境的危害很大,因此必须在生产过程中除去这些物质。

在传统工艺中,主要方法是通过富集之后送至焚烧炉焚烧的办法,这种方法能耗大,而且容易造成二次污染。

因此人们也在不断开发新的废物处理工艺,尤其是污水处理。

初步的分析表明,废水中通常含有丙烯腈、乙腈、氢氰酸、丙烯酰胺、丙烯酸、丙烯醛、氰基吡啶、反丁烯二腈、琥珀腈、马来酰亚胺、氨氮、硫酸盐以及大量的合物,COD几千到几十万mg·L-1。

高氰化物(或腈化物)含量是丙烯腈废水的一个重要特征。

含量一般为几百到几千mg·L-1。

现有的处理技术有:

超临界水氧化法、催化湿式氧化法、光催化氧化法、电芬顿法、微生物讲解法、膜分离法、辐照法、以及组合式方法等。

不过大多数方法都处于实验研究阶段,距离工业应用还有一段很长的路要走。

四、催化剂研究

1、丙烯氨氧化法反应机理

研究者提出过许多丙烯腈的生成机理,其区别主要是对丙烯腈和其它产物腈生成途径的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1