最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx

上传人:b****6 文档编号:15942515 上传时间:2022-11-17 格式:DOCX 页数:23 大小:4.48MB
下载 相关 举报
最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx_第1页
第1页 / 共23页
最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx_第2页
第2页 / 共23页
最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx_第3页
第3页 / 共23页
最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx_第4页
第4页 / 共23页
最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx

《最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx》由会员分享,可在线阅读,更多相关《最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx(23页珍藏版)》请在冰豆网上搜索。

最后修改稿郝云飞机副翼操纵系统研究Word文档格式.docx

2018年5月10日

摘要

本论文主要阐述了关于飞机副翼的组成,个组成部件的工作原理,调整及日常维护方法。

飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。

操纵则是飞行员通过驾驶机构改变飞机的飞行状态。

改变飞机纵向运动(如俯仰>

的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。

使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。

关键词:

驾驶杆传动杆传动机构载荷感觉器

Abstract

Themainthesisexpoundedaileronplaneaboutthecompositionofcomponentpartsoftheworkingprinciple,adjustmentandroutinemaintenancemethods.Manipulatetheplaneoftheplanecanbereferredtoasthequalityofthemanipulationmeanstomanipulatetheplane'

sresponsecharacteristics.Manipulationistochangethepilotinstitutionshavepassedthedrivingplaneflightstatus.Verticalplanetochangethesport(suchaspitch>

ofmanipulationknownasverticalmanipulation,mainlythroughthepush,pullstick,sothattheelevatororthewholeplaneHiraomovingdownwardorupwarddeflection,resultinginpitchingmoment,sothatplaneforpitchsports.Planearoundthelongitudinalaxissothatrotationofthebodyknownasthelateralmanipulationmanipulation,mainlybytheplane'

sailerondeflectiontoachieve.

Keyword:

Stickloadtransmissionroddrivemechanismsensilla

目录

摘要1

Abstract2

目录3

第1章副翼的结构1

1.1概述1

1.2副翼的功用及结构1

1.3副翼与机翼的连接2

1.4作用在副翼上的外载荷3

1.5副翼结构中力的传递4

第2章副翼组成和传动5

第3章载荷感觉器7

第4章液压助力器10

4.1基本工作原理10

4.2ZL-5液压助力器分析12

第5章副翼反效17

第6章副翼操纵系统的维修18

6.1副翼的更换18

6.2副翼调整片拆装19

6.3副翼系统的调整20

6.4副翼故障分析20

全文总结22

致谢23

参考文献24

第1章副翼的结构

1.1概述

飞机操纵品质的好坏是一个与飞行员有关的带一定主观色彩的问题,但是仍然有一些基本的标准来衡量飞机的操纵品质。

操纵品质常以输入量和输出量的比值(操纵性指标>

来表示,这些比值不宜过小,也不易过大。

如果比值太小,则操纵输入量小,输出量大,这种飞机对操纵过于敏感,不仅难于精确控制,而且也容易因反应量过大而产生失速或结构损坏等问题;

如果比值过大,则操纵输入量大,输出量小,飞机对操纵反应迟钝,容易使飞行员产生错误判断,也可能造成飞机的大幅度振荡,同样导致失速或结构破坏。

如果飞机在作机动飞行时,不需要飞行员复杂的操纵动作,驾驶杆力和杆位移都适当,并且飞机的反映也不过快或者过分的延迟,那么就认为该飞机具有良好的操纵性。

  按运动方向的不同,飞机的操纵也分为纵向、横向和航向操纵。

  改变飞机纵向运动(如俯仰>

  使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。

当驾驶员向右压驾驶杆时右副翼上偏、左副翼下偏,使右翼升力减小、左翼升力增大,从而产生向右滚转的力矩,飞机向右滚;

向左压杆时,情况完全相反,飞机向左滚转。

  改变航向运动的操纵称为航向操纵,由驾驶员踩脚蹬,使方向舵偏转来实现。

踩右脚蹬时,方向舵向右摆动,产生向右偏航力矩,飞机机头向右偏转;

踩左脚蹬时正相反,机头向左偏转。

实际飞行中,横向操纵和航向操纵是不可分的,经常是相互配合、协调进行,因此横向和航向操纵

1.2副翼的功用及结构

1.副翼的功用

副翼是使飞机产生滚转力矩,以保证飞机具有横侧操纵性。

其位置一般在机翼后缘外侧或机翼后缘内侧。

对副翼的要求:

①结构具有足够的抗扭刚度

②副翼偏转时产生的枢纽力矩较小<

副翼上的空气动力对转轴的力矩)这样,可使飞行员操纵省力,而且还可以减小副翼的结构所承受的扭矩。

2.副翼的结构

副翼通常由翼梁、翼肋、蒙皮、后缘型材组成,副翼一般都做成没有桁条的单梁式的结构,如图1-1<

a>

所示。

翼梁常有板式梁、管型梁两种形式,翼肋上一般开有减轻孔,蒙皮现代飞机常采用金属蒙皮,低速飞机常采用金属和布质蒙皮,如图1-1<

b)所示。

后缘型材通常在接头开口部位装有斜翼肋,如图1-1<

c)所示,用斜翼肋、加强板和翼梁组成的盒形结构来承受开口部位的扭矩

图1-1副翼的构造

1.3副翼与机翼的连接

通常采用俩个以上的副翼接头与机翼相连。

连接的副翼接头中,至少应有一个接头是沿展向固定的,其余的接头沿展向应是可移动的。

用多接头固定的副翼,在飞行中会由于机翼变形,使副翼转轴的轴线变弯,而影响操纵的灵活性,甚至发生卡滞现象。

为了解决这一矛盾,有些飞机采用了分段的副翼,它的每一段都独立地连接在机翼后缘的支架上,而各段的翼梁则采用可以传的扭矩的万向接头或胶接接头连接起来,图1-2所示为副翼与机翼的典型的连接型式。

图1-2副翼与机翼的连接型式

在机翼加强肋的后部与机翼后梁<

或墙)的连接处,安装有若干个支臂,每个支臂上装有一个过渡接头。

在副翼的大梁上装有相应个数的双耳片接头。

副翼通过这些耳片接头将其悬挂到机翼的支臂上。

注意:

每个操纵面除一个接头完全固定外,其余接头都有设计补偿,以便于安装和保证运动协调。

操纵副翼偏转的作动筒,其作动杆与副翼耳片接头的下耳片连接固定。

当副翼操纵作动筒动作时就使副翼绕轴心N偏转

1.4作用在副翼上的外载荷

在飞行中,副翼像一根固定在机翼上的多支点梁一样承受外部载荷。

作用在副翼上的外载荷有空气动力q、操纵力T和支点反作用力R,如图1-3:

R1R2R3所示

图1-3副翼的外载荷

副翼空气动力载荷的大小与副翼面积、副翼偏转角度和飞行速度有关(成正比)。

副翼面积越大、副翼偏转角度越大和飞行速度越快,则副翼上所受空气动力载荷就越大。

空气动力载荷沿弦向按梯形分布,沿展向与副翼弦长成正比。

副翼在装有支点的横截面上承受的剪力最大、弯矩最大;

在操纵摇臂部位扭矩最大。

这些部位的建构虽然有所加强,但由于副翼的截面积沿展向变化很大,难以按等强度原则来进行加强,所以,上述部位的强度仍然比其他部位赋予得很少些,维护时必须注意检查。

1.5副翼结构中力的传递

空气动力在副翼结构中的传递情况与在机翼结构中传递情况相似:

空气动力→蒙皮→翼肋→翼梁腹板→机翼

在副翼中剪力由梁腹板所承受;

弯矩由梁桁条和有效宽度的蒙皮承受;

扭矩由闭周缘蒙皮承受

第2章副翼组成和传动

1.副翼的组成

副翼操纵部分由驾驶杆、传动杆、摇臂、载荷感觉器、非线性传动机构、液压助力器等组成。

液压助力器用来利用液压帮助飞行员操纵副翼,以改善飞机的横侧操纵性。

左右副翼各由一个液压助力器操纵。

用液压操纵副翼时,副翼上的空气动力传不到驾驶杆上来,载荷感觉器可以使飞行员在操纵副翼时感受到杆力,从而根据这种感觉准确的操纵副翼。

副翼非线性传动机构用来随驾驶杆的行程改变传动系数,以保证在副翼效率较高时横侧操纵不至于过于灵敏,而在副翼效率较底时,又有足够的副翼偏转角。

左右副翼各有一个非线性机构。

2.副翼的传动方式

飞行员向左压驾驶杆,经过中心机构右侧第一根副翼传动杆和第一个副翼摇臂的传动,座舱底板上的第2、5根副翼传动杆均向前运动。

同时,第10、11隔框处的传动摇臂压缩载荷感觉器。

第3根传动杆穿出底舱底板后,与第13隔框下的换向接头相连,第3根传动杆向前运动,换向接头带动后面的换向摇臂反时针旋转。

于是经过传动杆、摇臂、非线性传动机构等传动,使右副翼液压助力器上的小传动杆向后移动,助力器的传动活塞就在液压作用下向后运动去操纵右副翼向下偏转。

与此同时,左副翼液压助力器的小传动杆向前移动,助力器的传动活塞在液压作用下向前运动,操纵左副翼向上偏转。

图2-1传动机构示意图

飞行员向右压驾驶杆,各传动杆、摇臂、助力器传动活塞的运动方向与上述相反,左副翼向下偏转,右副翼向上偏转。

换向接头由叉形接头、摇杆组成。

叉形接头下端与第3根传动杆相连,上端两叉铰接在支座上。

摇杆下端插在叉形接头上,上端则铰接在摇臂轴上。

由于叉形接头的转轴线与摇臂的转轴线不平行,相互之间有一夹角,因此当传动杆带着叉形街头下端前后运动时,就能通过摇杆迫使摇臂轴转动,从而使摇臂带动其下端传动杆左右运动。

其组成如图2-1所示。

第3章载荷感觉器

飞机装设液压助力器以后,用液压操纵副翼时,飞行员只需要克服液压助力器前的系统摩擦力和液压助力器配油柱塞的摩擦力,带动配油柱塞打开油路,副翼即可偏转。

这时作用在副翼上的枢轴力矩由助力器内的液压作用力平衡,不能传到驾驶杆上来。

由于摩擦力很小,飞行员会感到操纵副翼过轻。

为了使飞行员能感受到适当的杆力,以便凭感觉来准确地掌握操纵分量,控制飞行状态,副翼操纵部分中装设液压助力器以后,还装了载荷感觉器。

载荷感觉器的构造如图3-1所示,它在座舱内右后方。

外筒内的接头固定在机身上,活动杆上的接头则与第10~11隔框处传动副翼的摇臂相连。

图3-1载荷感觉器

飞行员压驾驶杆使副翼偏转时,要压缩载荷感觉器内的弹簧。

左压杆,摇臂将活动杆压入,压缩左端小弹簧和中间的大弹簧;

右压杆则摇臂将活动杆拉出,压缩右端小弹簧和中间大弹簧。

弹簧张力传到驾驶杆上,飞行员必须用一定力量压住驾驶杆,才能使副翼保持在一定位置。

副翼偏转角度越大,即压杆量越大,弹簧被压缩得越厉害,压杆力越大。

这样,飞行员就能从压杆力的大小,感觉到副翼片状角的大小。

载荷感觉器的工作特性如图3-2,它是由载荷器的结构特点所决定的,载荷感觉器内有3个弹簧。

大弹簧的初始张力为<

19.5±

1)×

9.81N;

两个小弹簧的最大压缩量均为2.5mm,这一距离刚好等于小弹簧座与大弹簧座之间的距离。

小弹簧的终点张力与大弹簧的初始张力相等。

图3-2副翼载荷感觉器工作特性曲线

压杆时,摇臂带动活动杆移动,开始时只压缩一端的小弹簧。

由于小弹簧圈数较少,弹力随压缩量增长较快,即显得较硬。

活动杆移动2.5mm时,载荷感觉器所产生的力为19.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1