七年级数学二元一次方程组应用题及答案[1].doc
《七年级数学二元一次方程组应用题及答案[1].doc》由会员分享,可在线阅读,更多相关《七年级数学二元一次方程组应用题及答案[1].doc(7页珍藏版)》请在冰豆网上搜索。
二元一次方程组解应用题
列方程解应用题的基本关系量:
行程问题:
速度×时间=路程
顺水速度=静水速度—水流速度
逆水速度=静水速度—水流速度
工程问题:
工作效率×工作时间=工作量
浓度问题:
溶液×浓度=溶质
银行利率问题:
免税利息=本金×利率×时间
二元一次方程组解决实际问题的基本步骤:
1、审题,搞清已知量和待求量,分析数量关系.(审题,寻找等量关系)
2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)
3、列出方程组并求解,得到答案.(解方程组)
4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)
列方程组解应用题的常见题型:
和差倍总分问题:
较大量=较小量+多余量,总量=倍数×倍量
产品配套问题:
加工总量成比例
速度问题:
速度×时间=路程
航速问题:
此类问题分为水中航速和风中航速两类
顺流(风):
航速=静水(无风)中的速度+水(风)速
逆流(风):
航速=静水(无风)中的速度--水(风)速
工程问题:
工作量=工作效率×工作时间
(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)
增长率问题:
原量×(1+增长率)=增长后的量
原量×(1+减少率)=减少后的量
浓度问题:
溶液×浓度=溶质
银行利率问题:
免税利息=本金×利率×时间
税后利息=本金×利率×时间—本金×利率×时间×税率
利润问题:
利润=售价—进价,利润率=(售价—进价)÷进价×100%
盈亏问题:
关键从盈(过剩)、亏(不足)两个角度把握事物的总量
数字问题:
首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示
几何问题:
必须掌握几何图形的性质、周长、面积等计算公式
年龄问题:
抓住人与人的岁数是同时增长的
一元一次方程方程应用题归类分析
1.和、差、倍、分问题:
(1)倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?
分析:
等量关系为:
解:
设1990年6月底每10万人中约有x人具有小学文化程度
2.等积变形问题:
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。
例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?
(结果保留整数)
分析:
等量关系为:
圆柱形玻璃杯体积=长方体铁盒的体积下降的高度就是倒出水的高度
解:
设玻璃杯中的水高下降xmm
3.劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
例3.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:
列表法。
每人每天
人数
数量
大齿轮
16个
x人
16x
小齿轮
10个
人
等量关系:
小齿轮数量的2倍=大齿轮数量的3倍
解:
设分别安排x名、名工人加工大、小齿轮
4.比例分配问题:
这类问题的一般思路为:
设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:
各部分之和=总量。
例4.三个正整数的比为1:
2:
4,它们的和是84,那么这三个数中最大的数是几?
解:
设一份为x,则三个数分别为x,2x,4x分析:
等量关系:
三个数的和是84
5.数字问题
(1)要搞清楚数的表示方法:
一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:
100a+10b+c。
(2)数字问题中一些表示:
两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例5.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
等量关系:
原两位数+36=对调后新两位数解:
设十位上的数字X,则个位上的数是2x,
10×2x+x=(10x+2x)+36解得x=4,2x=8.
6.工程问题:
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例6.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:
甲完成工作量+乙完成工作量=工作总量。
解:
设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(+)×3+=1, 解这个方程,++=1
12+15+5x=605x=33 ∴x==6 答:
略.
例7.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:
相遇问题,画图表示为:
等量关系是:
慢车走的路程+快车走的路程=480公里。
解:
设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480
解这个方程,230x=390 ∴x=1答:
略.
分析:
相背而行,画图表示为:
等量关系是:
两车所走的路程和+480公里=600公里。
解:
设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴x=
(3)分析:
等量关系为:
快车所走路程-慢车所走路程+480公里=600公里。
解:
设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴x=2.4 答:
略.
分析:
追及问题,画图表示为:
等量关系为:
快车的路程=慢车走的路程+480公里。
解:
设x小时后快车追上慢车。
由题意得,140x=90x+480 解这个方程,50x=480 ∴x=9.6答:
略.
分析:
追及问题,等量关系为:
快车的路程=慢车走的路程+480公里。
解:
设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+480 50x=570 解得,x=11.4
8.利润赢亏问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价商品售价=商品标价×折扣率
例8.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:
探究题目中隐含的条件是关键,可直接设出成本为X元
进价
折扣率
标价
优惠价
利润
x元
8折
(1+40%)x元
80%(1+40%)x
15元
等量关系:
(利润=折扣后价格—进价)折扣后价格-进价=15
解:
设进价为X元,80%X(1+40%)—X=15,X=125答:
略.
9.储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)
例9.某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?
(不计利息税)
分析:
等量关系:
本息和=本金×(1+利率)解:
设半年期的实际利率为x,250(1+x)=252.7,x=0.0108
所以年利率为0.0108×2=0.0216
重点题目:
1、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.
解析:
设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:
甲、乙两人相遇前还相距3千米.根据题意,得
第二种情况:
甲、乙两人是相遇后相距3千米.根据题意,得
答:
甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.
2、甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?
解析:
设两个加数分别为x、y.根据题意,得解得
所以原来的两个加数分别为230和42.
3、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?
解析:
由题意得甲做12天,乙做8天能够完成任务;而甲做9天,乙做13天也能完成任务,由此关系我们可列方程组求解.设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得
答:
甲每天做50个机器零件,乙每天做30个机器零件
4、师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?
解析:
由“我像你这样大时,你才4岁”可知师傅现在的年龄等于徒弟现在的年龄加上徒弟现在的年龄减4,由“当你像我这样大时,我已经是52岁的人了”可知52等于师傅现在的年龄加上师傅现在的年龄减去徒弟的年龄.由这两个关系可列方程组求解.设现在师傅x岁,徒弟y岁,根据题意,得
答:
现在师傅36岁,徒弟20岁.
5、有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.
解析:
设第一个长方形的长与宽分别为5xcm和4xcm,第二个长方形的长与宽分别为3ycm和2ycm.
从而第一个长方形的面积为:
5x×4x=20x2=1620(cm2);第二个长方形的面积为:
3y×2y=6y2=150(cm2). 答:
这两个长方形的面积分别为1620cm2和1