浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx

上传人:b****4 文档编号:15912948 上传时间:2022-11-17 格式:DOCX 页数:12 大小:82.04KB
下载 相关 举报
浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx_第1页
第1页 / 共12页
浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx_第2页
第2页 / 共12页
浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx_第3页
第3页 / 共12页
浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx_第4页
第4页 / 共12页
浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx

《浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx(12页珍藏版)》请在冰豆网上搜索。

浙教版数学九年级下册专项训练一锐角三角函数的计算Word文档下载推荐.docx

(第5题)

5.如图,A,B,C三点在正方形网格线的交点处,若将△ACB绕点A逆时针旋转得到△AC′B′,则tanB′的值为(  )

类型3:

借助计算器求锐角三角函数值

6.用计算器求下列各式的值.(结果精确到0.0001)

(1)sin89°

(2)cos45.32°

(3)tan60°

25′41″;

(4)sin67°

28′35″.

 

求特殊三角函数值

利用特殊锐角三角函数值进行简单的计算

7.求下列各式的值.

(1)2sin30°

-cos45°

(2)tan30°

-sin60°

·

sin30°

.

逆用特殊锐角三角函数值求角的度数

8.在△ABC中,如果∠A,∠B满足|tanA-1|+=0,那么∠C=________.

9.求满足下列条件的锐角α.

(1)sin2α=;

  

(2)6cos(α-16°

)=3.

巧用特殊锐角三角函数值求一般三角函数值

10.求sin15°

,cos15°

,tan15°

的值.

专项训练二:

三角函数与几何的综合

三角函数并不仅仅体现在直角三角形中,对于非直角三角形或其他图形中求三角函数值,往往转化到直角三角形中去求,同时三角函数通常和几何图形中的三角形、四边形、相似形等综合考查,如求线段的长度、角的度数、某些角的三角函数值、几何图形的面积等.

三角函数与三角形的综合

1.(学科内综合题)如图所示,在△ABC中,AD⊥BC于点D,点E是AC边的中点,BC=14,AD=12,sinB=,求:

(1)线段DC的长;

(2)tan∠EDC的值.

(第1题)

三角函数与四边形的综合

2.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,求tan∠DBE的值.

3.如图,在四边形ABCD中,∠C=60°

,∠B=∠D=90°

,AD=2AB,CD=3,求BC的长.

三角函数与相似形的综合

4.如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P为直角顶点的直角三角形的两条直角边分别交线段DC,BC于点E,F,连结EF,求tan∠PEF的值.

5.如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.

(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;

(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;

(3)当tan∠PAE=时,求a的值.

专项训练三:

三角函数与一次函数、反比例函数的综合

三角函数与一次函数、反比例函数的综合,一般是先根据三角函数关系式求出相关线段的长,然后由函数图象与几何图形的相交情况建立方程(组),求得函数解析式.从而求出点的坐标、线段长度、图形的面积等;

反之,也有的根据函数解析式求出需要的线段的长,进而求得必要的三角函数值,以便于解决函数或几何中的其他问题.

三角函数与一次函数的综合

1.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与x轴交于点C,与y轴交于点B,连结AB,α=75°

,求b的值.

2.如图,在平面直角坐标系中,已知△ABC是直角三角形,∠ACB=90°

,A(-3,0),C(1,0),tan∠BAC=.

(1)写出过点A,B的直线对应的函数解析式;

(2)在x轴上找一点D,连结DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标.

三角函数与反比例函数的综合

3.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos∠BAO=,求k的值.

4.(14·

济南)如图,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数的图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°

,AD⊥y轴,垂足为D.

(1)求k的值;

(2)求tan∠DAC的值及直线AC的解析式.

专项训练四:

思想方法荟萃

本章主要学习了锐角三角函数、解直角三角形及其应用,体现的主要思想方法有:

方程思想、分类讨论思想、转化思想、数形结合思想等.

方程思想

1.(中考·

南充)马航MH370失联后,我国政府积极参与搜救.某日,如图,我国两艘专业救助船A,B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.5°

方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:

sin36.5°

≈0.6,cos36.5°

≈0.8,tan36.5°

≈0.74)

(1)求可疑漂浮物P到A,B两船所在直线的距离;

(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.

分类讨论思想

2.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°

方向还有一个加油站C,C到高速公路的最短距离CD是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)

转化思想

3.如图所示,已知四边形ABCD,∠ABC=120°

,AD⊥BA,CD⊥BC,AB=30,BC=50,求四边形ABCD的面积.

数形结合思想

4.(中考·

铁岭)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°

,塔底B的仰角为26.6°

.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O,B,C,A,P在同一平面内,求山坡的坡度.(参考数据sin26.6°

≈0.45,tan26.6°

≈0.50;

sin37°

≈0.60,tan37°

≈0.75)

答案

专项训练一

1.;

2. 点拨:

设AE=x,则BE=x,CE=8-x,由题意得62+(8-x)2=x2,解得x=,∴AE=,CE=.

∴tan∠CBE===.

3.B 4.A 5.B

6.解:

(1)按键顺序为,显示结果为0.999847695,∴sin89°

≈0.9998.

(2)按键顺序为,显示结果为0.703146544,∴cos45.32°

≈0.7031.

(3)按键顺序为,显示结果为1.762327064,∴tan60°

25′41″≈1.7623.

(4)按键顺序为,显示结果为0.923721753,∴sin67°

28′35″≈0.9237.

解:

(1)原式=2×

-×

=1-1

=0.

(2)原式=-·

=.

8.75°

 点拨:

由题意得:

tanA-1=0,cosB-=0,

∴∠A=45°

,∠B=60°

,∴∠C=180°

-(∠A+∠B)=180°

-(45°

+60°

)=75°

(1)sin2α=,

2α=45°

α=22.5°

(2)6cos(α-16°

)=3,

cos(α-16°

)=,

  α-16°

=30°

     α=46°

10.解:

如图,在Rt△ABC中,∠BAC=30°

,∠C=90°

,延长CA到D,使AD=AB,则∠D=15°

,设BC=a,则AB=2a,AC=a,∴CD=(2+)a.

在Rt△BCD中,BD===(+)a.

∴sin15°

=sinD===;

cos15°

=cosD===;

tan15°

=tanD===2-.

(第10题)

专项训练二

1.解:

(1)在Rt△ABD中,∵AD=12,sinB==,∴AB=15.

∴BD===9.

∴DC=BC-BD=14-9=5.

(2)过点E作EF⊥CD于点F.∵AD⊥BC,∴EF∥AD,又点E为AC边的中点,∴EF是△ADC的中位线.∴EF=AD=6,DF=DC=.∴tan∠EDC===.

2.解:

∵四边形ABCD是菱形,∴AD=AB.∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x-3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:

DE==8,在Rt△BDE中,tan∠DBE===2.

3.解:

延长DA,CB交于点E,∵在Rt△CDE中,∠C=60°

,CD=3,∴DE=3,EC=6.∵AD=2AB,∴设AB=k,则AD=2k,∵∠C=60°

,∠ABC=∠D=90°

,∴∠E=30°

.∵在Rt△ABE中,sinE==,tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得k=,∴EB=,∴BC=6-=.

4.解:

过点E作EM⊥AB于点M,∵∠PEM+∠EPM=90°

,∠FPB+∠EPM=90°

∴∠PEM=∠FPB.又∵∠EMP=∠PBF=90°

,∴△EPM∽△PFB.

∴===,∴tan∠PEF==.

5.解:

(1)设CE=y,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°

∵BP=a,CE=y,∴PC=5-a,DE=4-y,∵AP⊥PE,∴∠APE=90°

,∠APB+∠CPE=90°

∵∠APB+∠BAP=90°

,∴∠CPE=∠BAP,∴△ABP∽△PCE,∴=,∴y=,即CE=.

(2)当a=3时,y==,即CE=,∵四边形ABCD是矩形,

∴AD=BC=5,AD∥BF,∴△AED∽△FEC,∴=,∴CF=3,∴PF=PC+CF=5.

∴AD=PF,∴四边形APFD是平行四边形.在Rt△APB中,AB=4,BP=3,∠B=90°

,∴AP=5=PF,

∴四边形APFD是菱形.

(3)根据tan∠PAE=可得=2,易得△ABP∽△PCE,∴==2,得==2或==2,解得a=3,y=1.5或a=7,y=3.5.∴a=3或7.

专项训练三

∵直线y=x+b(b>0)是由直线y=x向上平移b个单位得到的,∴∠BCO=45°

.又∵α=75°

,∴∠BAO=α-∠BCO=75°

-45°

.在Rt△ABO中,tan∠BAO=,∴BO=tan∠BAO·

AO=tan30°

×

5=.∴B.将B的坐标代入y=x+b

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1