位移传感器及工程应用PPT资料.ppt

上传人:b****3 文档编号:15667496 上传时间:2022-11-11 格式:PPT 页数:98 大小:3.56MB
下载 相关 举报
位移传感器及工程应用PPT资料.ppt_第1页
第1页 / 共98页
位移传感器及工程应用PPT资料.ppt_第2页
第2页 / 共98页
位移传感器及工程应用PPT资料.ppt_第3页
第3页 / 共98页
位移传感器及工程应用PPT资料.ppt_第4页
第4页 / 共98页
位移传感器及工程应用PPT资料.ppt_第5页
第5页 / 共98页
点击查看更多>>
下载资源
资源描述

位移传感器及工程应用PPT资料.ppt

《位移传感器及工程应用PPT资料.ppt》由会员分享,可在线阅读,更多相关《位移传感器及工程应用PPT资料.ppt(98页珍藏版)》请在冰豆网上搜索。

位移传感器及工程应用PPT资料.ppt

首先对R=f(x)曲线进行分析,确定实现方案。

一般来说,实现函数电位器的方案有三种。

第7章位移传感器及工程应用第一种方法骨架结构示意图如图7-2(b)所示。

该方法采用的是曲线骨架结构,通过精心设计骨架形状来逼近函数较精确,但曲线骨架制造困难。

图图7-2(b)采用曲线骨架结构示意图采用曲线骨架结构示意图图图7-2(a)非线性电位器的特性曲线非线性电位器的特性曲线第7章位移传感器及工程应用第二种方法是在允许误差的范围内进行折线逼近,即用四条线段组成的折线代替原来的曲线来近似逼近曲线R=f(x),采用阶梯骨架结构示意图如图7-2(c)所示。

图图7-2(c)采用阶梯骨架结构示意图采用阶梯骨架结构示意图图图7-2(a)非线性电位器的特性曲线非线性电位器的特性曲线第7章位移传感器及工程应用对于阶梯骨架结构,在骨架宽度b一定的情况下,骨架高度hi可按下式计算(7-1)式中:

D为电阻丝直径;

k为电阻丝绕制节距;

为电阻率;

Ri为Ai点所对应的电阻值;

xi为Ai点所对应的位移;

b为骨架宽度;

R0=0;

x0=0。

第7章位移传感器及工程应用图图7-2(d)等截面骨架等截面骨架结构示意图结构示意图第三种方法是采用等截面骨架和电阻并联的结构来实现的,它的结构示意图如图7-2(d)所示。

图图7-2(a)非线性电位器的特性曲线非线性电位器的特性曲线第7章位移传感器及工程应用对于等截面骨架结构,各段并联的电阻值ri,一般可按下列公式计算(7-2)式中,Ri为等截面支架上xi-1点和xi点之间并联的电阻;

R(i-1)i为等截面支架上xi-1点和xi点之间电阻丝的电阻;

Ri为i点所对应的电阻。

由上可见,这种等截面骨架函数电位器最易实现,但它只保证了在x1、x2、x3、x4点处的电阻值符合曲线;

当电刷处在各段中间位置时,由于分流作用将引起一定的误差。

故多用于要求精度不高的场合。

第7章位移传感器及工程应用2.2.工作原理工作原理非线性电位器的滑动触点一般位于直线面上,当滑动触点受到外界作用力而产生位移时,就改变了电位器的电阻值,这个电阻值的变化与位移变化成非线性关系,这就是非线性电位器的工作原理。

7.1.3绕线式电位器的材料绕线式电位器的材料1.1.电阻丝电阻丝电阻丝的优点是电阻率大、电阻温度系数小,耐磨损,耐腐蚀、焊接方便等。

常用电阻丝材料有以下几种:

1)铜锰合金类它的电阻温度系数为0.0010.003/,比铜的热电势小,约为12V/,其缺点是工作温度低,一般为-5060。

第7章位移传感器及工程应用2)铜镍合金类它电阻温度系数最小,约0.002/,电阻率为0.45m,机械强度高。

但比铜的热电势大,康铜是这类合金的代表。

3)铂铱合金类它具有硬度高,机械强度大、抗腐蚀、耐氧化、耐磨等优点,电阻率为0.23m,可制成很细的丝做高阻值电位器。

此外,还有镍铬丝、卡玛丝及银钯丝等。

2.2.电刷电刷电刷结构往往反映出电位器的噪音电平。

只有当电刷与电阻丝材料配合恰当,触点有良好的抗氧化能力,接触电势小,并有一定的接触压力时,才能使噪音降低。

常用电位器的接触力在0.0050.05N之间。

第7章位移传感器及工程应用3.3.骨架骨架对骨架材料要求形状稳定,其热膨胀系数和电阻丝相近,表面绝缘电阻高,并且希望有较好的散热能力。

4.4.噪音噪音电位器传感器的噪声一般分为两类:

一类是噪声来自电位器上自由电子的随机运动,这种噪声电子流叠加在电阻的工作电流上;

另一类是电刷沿电位器移动时因接触电阻变化引起的接触噪声。

此外,还有摩擦电噪声,振动噪声和高速噪声。

第7章位移传感器及工程应用7.1.4电位器传感器的应用电位器传感器的应用绕线式角位移电位器传感器的工作原理如图7-3所示。

绕线式角位移电位器传感器一般性能如下:

动态范围:

10165线性度:

0.53电位器全电阻:

102103工作温度:

-50150工作寿命:

104次图图7-3角位移电位器的工作原理角位移电位器的工作原理第7章位移传感器及工程应用7.2电感式位移传感器电感式位移传感器7.2.1自感式位移传感器自感式位移传感器把被测位移变化转变为线圈自感系数变化的传感器称作自感式位移传感器。

因为自感系数常称作电感系数,所以自感式位移传感器也常称作电感式位移传感器。

由本书4.6.1节知,一个匝数为N的线圈,其自感系数L为式中,Rm为线圈磁路总磁阻。

式(73)表明,当匝数N确定后,自感系数L仅是磁阻Rm的函数。

而自感式位移传感器就是通过改变磁路的磁阻来实现自感系数变化的,故又把它称作变磁阻式位移传感器。

(7-3)第7章位移传感器及工程应用根据被测位移改变磁阻的方式,它又分为变气隙型、变面积型和螺线管型三种。

图74是单自感式位移传感器的基本结构示意图。

在这三种类型中最常用的是变气隙型和螺线管型两种,现分别介绍如下。

图图74单自感式位移传感器的基本结构示意图单自感式位移传感器的基本结构示意图第7章位移传感器及工程应用1.1.变气隙型自感式位移传感器变气隙型自感式位移传感器变气隙型单自感式位移传感器的基本结构如图74(a)所示。

按本书4.6.1节的分析可得,该传感器的自感系数L为(7-4)图图7-4(a)变气隙型变气隙型式中,N为线圈的匝数;

为气隙磁路的长度;

A0为中间气隙磁路的横截面积;

0为空气的磁导率(0=410-7H/m)。

第7章位移传感器及工程应用假设该传感器的初始气隙为0,则初始电感量L0为当被测运动部件与衔铁刚性相连时,若被测运动部件使衔铁向上移动了x,即=0x,将它代入式(74)整理得电感系数L为当x/0rs时,可认为螺线管内为匀强磁场,忽略边沿效应,则螺线管电感L的计算公式为式中,V为螺线管内空间的体积;

n为线圈单位长度上的匝数;

为螺线管内空间介质的磁导率。

(78)第7章位移传感器及工程应用根据式(7-8)可推导出图74(c)中螺线管线圈的电感系数L为式中,0为空气的磁导率;

r为活动衔铁的相对磁导率;

N为螺线管线圈的匝数。

若活动衔铁插入线圈的初始深度为l0,当衔铁在螺线管线圈中向上移动了x,即l=l0+x时,将它代入式(79)得由式(710)可知,当螺线管的结构参数确定后,自感L与位移x呈线性关系。

但由于实际螺线管内磁场不完全均匀及存在边沿效应等因素,所以实际的自感L与位移x呈近似线性关系。

(710)(79)第7章位移传感器及工程应用图图7-6螺线管型差动自感式位移传感器结构螺线管型差动自感式位移传感器结构为了减少非线性误差,实际制作时通常取l0=ls/2。

这种传感器的优点是量程大、结构简单、便于制作;

缺点是灵敏度比较低,且有一定的非线性。

一般用于测量精度要求不是很高,且检测量程比较大的线位移情况。

为了提高灵敏度,减少非线性误差,通常把它做成差动形式,图76是螺线管型差动自感式位移传感器的结构图。

它由两个完全相同的螺线管组合而成。

第7章位移传感器及工程应用显然,当衔铁处于两个螺线管相连的中心位置时,两边的螺线管电感量相等。

当衔铁偏离中心位置时,左右两个线圈的电感量,一个增加一个减少,形成差动形式。

同样可以证明,螺线管型差动自感式位移传感器与螺线管型单自感式位移传感器相比,灵敏度提高了一倍,并且非线性误差也大大减少。

33.自感式位移传感器测量电路自感式位移传感器测量电路由于位移是向量,它既有大小,又有方向。

为了方便测量位移的大小和方向,常采用差动式电感传感器。

差动自感式位移传感器测量电路相对比较复杂,常用的是相敏检波电路。

相敏检波电路有多种,下面介绍两种。

第7章位移传感器及工程应用1)电阻式差动交流电桥相敏检波电路电阻式差动交流电桥相敏检波电路如图77所示。

图中差动自感传感器的两个线圈Zx1、Zx2和两个平衡电阻(R1=R2=R)组成一个电阻式差动交流电桥,二极管VD1VD4接成相敏检波电路。

图图77电阻式差动交流电桥相敏检波电路电阻式差动交流电桥相敏检波电路第7章位移传感器及工程应用假设uo的参考极性为上正下负,流过电阻R1、R2的电流分别为i1、i2。

下面分三种情况来分析它的检波原理。

当衔铁处于中间位置时,由于差动传感器两线圈的Zx1=Zx2,且R1=R2,电桥平衡。

于是输出电压uo=0。

当衔铁偏离中间位置上移使Zx1的阻抗增大,Zx2的阻抗减小时,在u的正半周内,由于A点电位高于B点,二极管VD2、VD4导通,VD1、VD3截止。

则电流i1流经Zx2、VD4后自上而下地流过R1,而电流i2流经Zx1、VD2后自下而上地流过R2,且i1i2。

根据uo的标定方向可知uo0,在u的负半周内,由于A点电位低于B点。

二极管VD1、VD3导通,VD2、VD4截止。

根据此时电流i1、i2的流向和i10。

由此可知,在这种情况下,不管u是正半周还是负半周,输出电压uo总是大于零。

第7章位移传感器及工程应用当衔铁偏离中间位置下移使线圈Zx1的阻抗减小,Zx2的阻抗增大时,同理可知,不管交流电源u是正半周还是负半周,输出电压uo总是小于零。

2)变压器式差动交流电桥相敏检波电路变压器式差动交流电桥相敏检波电路如图78所示。

图中VD1VD4是四个性能完全相同的二极管,组成一个相敏检波电路。

R起限流作用。

因us与u2同频,经过移相电路可使us与u2保持同相或反相。

输出电压信号uo从CD两端输出。

为了有效地控制四个二极管的导通,要求us的幅值要远大于u2的幅值,且R1=R2=R0。

下面也分三种情况来分析。

第7章位移传感器及工程应用图图78变压器式差动交流电桥相敏检波电路变压器式差动交流电桥相敏检波电路当衔铁处于中间位置时,由于Zx1=Zx2=Z0,则u2=0,只有us起作用。

假设us为正半周时A为“+”,B为“”,VD1和VD3导通,VD2和VD4截止;

因VD1和VD3两支路对称,故输出电压uo=0。

同理可知,当us为负半周时,输出电压uo也为零。

第7章位移传感器及工程应用当衔铁偏离中心位置向上移动时,设us与u2同相,因us的幅值远大于u2,则在us和u2的正半周(即A为“+”,B为“”)内,VD1和VD3导通,VD2和VD4截止;

故VD1回路的总电势为us+u2,VD3回路总电势为us-u2。

设流过VD1和VD3的电流分别为i1和i3,则i1i3,输出电压uo0。

在us和u2的负半周(即B为“+”,A为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1