求数列通项公式ppt优质PPT.ppt

上传人:b****3 文档编号:15634800 上传时间:2022-11-09 格式:PPT 页数:33 大小:775KB
下载 相关 举报
求数列通项公式ppt优质PPT.ppt_第1页
第1页 / 共33页
求数列通项公式ppt优质PPT.ppt_第2页
第2页 / 共33页
求数列通项公式ppt优质PPT.ppt_第3页
第3页 / 共33页
求数列通项公式ppt优质PPT.ppt_第4页
第4页 / 共33页
求数列通项公式ppt优质PPT.ppt_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

求数列通项公式ppt优质PPT.ppt

《求数列通项公式ppt优质PPT.ppt》由会员分享,可在线阅读,更多相关《求数列通项公式ppt优质PPT.ppt(33页珍藏版)》请在冰豆网上搜索。

求数列通项公式ppt优质PPT.ppt

(1)9,99,999,9999,解:

解:

an=10n1

(2)1,11,111,1111,分析:

注意观察各项与它的序号的关系分析:

注意观察各项与它的序号的关系有有101,1021,1031,1041解:

an=(10n1)这是特殊到一般的思想,也是数这是特殊到一般的思想,也是数学上重要的思想方法,但欠严谨!

学上重要的思想方法,但欠严谨!

分析分析:

注意与熟悉数列注意与熟悉数列9,99,999,9999,联系系练习:

练习:

注意注意:

(:

(1)这种做法适用于所有数列;

)这种做法适用于所有数列;

(2)用这种方法求通项需检验用这种方法求通项需检验a1是否满足是否满足an.二、公式法二、公式法(利用(利用an与与Sn的关系的关系或利用等差、等比数列的通项公或利用等差、等比数列的通项公式)式)练习:

1.an的前项和的前项和Sn=2n21,求通项求通项an二、公式法二、公式法(利用(利用an与与Sn的关系的关系或利用等差、等比数列的通项公式)或利用等差、等比数列的通项公式)an=S1(n=1)SnSn1(n2)解:

当解:

当n2时,时,an=SnSn1=(2n21)2(n1)21=4n2不要遗漏不要遗漏n=1的情形哦!

的情形哦!

当当n=1时时,a1=1不满足上式不满足上式因此因此an=1(n=1)4n2(n2,)3.已知已知an中,中,a1+2a2+3a3+nan=3n+1,求通项求通项an解解:

a1+2a2+3a3+nan=3n+1(n1)注意注意n的范围的范围a1+2a2+3a3+(n1)an1=3n(n2)nan=3n+13n=23n23nnan=而而n=1时时,a1=9(n2)两式相减得:

两式相减得:

an=9(n=1)23nn(n2,)例例3.已知已知an中中,an+1=an+n(nN*),a1=1,求通求通项项an解解:

由由an+1=an+n(nN*)得得a2a1=1a3a2=2a4a3=3anan1=n1an=(anan1)+(an1an2)+(a2a1)+a1=(n1)+(n2)2)+2+1+1三、累加法三、累加法(递推公式形如形如an+1=an+f(n)型型的数列)n个等式相加得a1=1an+1an=n(nN*)

(1)注意讨)注意讨论首项论首项;

(2)

(2)适用于适用于an+1=an+f(n)型递推型递推公式公式求法:

累加法求法:

累加法练习:

四、累乘法四、累乘法(形如形如an+1=f(n)an型型)例例4.已知已知an是首项为是首项为1的正项数列的正项数列,且且(n+1)an+12+an+1annan2=0,求求an的通项的通项公式公式解解:

(n+1)an+12+an+1annan2=0(an+1+an)(n+1)an+1nan=0an+1+an0(n1)an=.注意:

累乘法与累加法有些相似,但它是n个等式相乘所得(n+1)an+1=nan练习练习1:

类型四、类型四、累乘法累乘法形如形如的递推式的递推式四、累乘法四、累乘法适用于适用于an+1=anf(n)型的递推公式型的递推公式练习练习2五、迭代法五、迭代法例例5.已知已知an中中,an=3n1+an1,(n2),a1=1,求通求通项项an.解解:

an=3n1+an1(n2)an=3n1+an1=3n1+3n2+an2=3n1+3n2+3n3+an3=3n1+3n2+3n3+3+a1=3n1+3n2+3n3+3+1=3n112特点特点逐项代换逐项代换(递推公式形如形如an+1=an+f(n)型型的数列)六待定系数法(构造法)六待定系数法(构造法)例例6:

由题意可知:

an+1+1=2(an+1)所以数列所以数列an+1是以是以a1+1=2为首项,为首项,2为公比为公比的等比数列的等比数列.所以所以an+1=2n,即即an=2n-1反思:

待定系数法如何确定反思:

待定系数法如何确定x?

待定系数法:

令令an+1+x=p(an+x)即即an+1=pan+px-x根据已知根据已知x=所以数列所以数列是等比数列是等比数列.类型七、类型七、相除法相除法形如形如的递推式的递推式例例8:

【变式迁移】已知数列an中,a15且an2an12n1(n2且nN*).

(1)求证数列为等差数列;

(2)求数列an的通项公式.解:

(1)方法1:

(构造法)因为a15且an2an12n1,所以当n2时,an12(an11)2n,所以,所以,所以是以为首项,以1为公差的等差数列.方法2:

(代入法)因为a15,n2时,所以,所以是以为首项,以1为公差的等差数列.

(2)由

(1)知,所以an(n1)2n1.练习练习.已知数列已知数列an中中a1=2,an+1=4an+求数列求数列an的通项公式。

的通项公式。

反思反思例例9:

八取倒法八取倒法形如形如的递推式的递推式练习练习形如形如的递推式的递推式例例10:

八取倒法八取倒法求数列的通项公式求数列的通项公式类型类型方法方法1、已知前几项、已知前几项观察法观察法2、已知前、已知前n项和项和Sn前前n项和法项和法3、形如、形如的递推式的递推式累加法累加法4、形如、形如的递推式的递推式累乘法累乘法5、形如、形如的递推式的递推式待定系数法待定系数法6、形如、形如的递推式的递推式取倒法取倒法7、形如、形如的递推式的递推式相除法相除法构构造造辅辅助助数数列列1:

作业作业2:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1