正余弦定理的应用举例PPT格式课件下载.ppt
《正余弦定理的应用举例PPT格式课件下载.ppt》由会员分享,可在线阅读,更多相关《正余弦定理的应用举例PPT格式课件下载.ppt(30页珍藏版)》请在冰豆网上搜索。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
问题问题1.A、B两点在河的两岸两点在河的两岸(B点不可到达点不可到达),要测量,要测量这两点之间的距离。
这两点之间的距离。
测量者在测量者在A的同侧,在所在的同侧,在所在的河岸边选定一点的河岸边选定一点C,测出测出AC的距离是的距离是55m,BAC60o,ACB75o,求,求A、B两点间的距两点间的距离(精确到离(精确到0.1m).分析:
所求的边分析:
所求的边AB的对角是已知的的对角是已知的,又知三角形又知三角形的一边的一边AC,根据三角形内角和定理可计算出边根据三角形内角和定理可计算出边AC的对角的对角,根据正弦定理根据正弦定理,可以计算出边可以计算出边AB.解:
根据正弦定理,得解:
根据正弦定理,得答:
答:
A、B两点间的距离为两点间的距离为75.1米。
米。
例例2、A、B两点都在河的对岸(不可到达),设计一种两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。
测量两点间的距离的方法。
分析:
用例分析:
用例1的方法,可以计算出河的这一岸的一的方法,可以计算出河的这一岸的一点点C到对岸两点的距离,再测出到对岸两点的距离,再测出BCA的大小,的大小,借助于余弦定理可以计算出借助于余弦定理可以计算出A、B两点间的距离。
两点间的距离。
解:
测量者可以在河岸边选定两点解:
测量者可以在河岸边选定两点C、D,测得测得CD=a,并且在并且在C、D两点分别测得两点分别测得BCA=,ACD=,CDB=,BDA=.在在ADC和和BDC中,应用正弦定理得中,应用正弦定理得计算出计算出AC和和BC后,再在后,再在ABC中,应用余弦定理计算中,应用余弦定理计算出出AB两点间的距离两点间的距离ABCD30453060分析:
1.在在ABD中求中求AB2.在在ABC中求中求AB练习练习选定两个可到达点选定两个可到达点CC、DD;
测量测量CC、DD间的距离及间的距离及ACBACB、ACDACD、BDCBDC、ADBADB的大小;
的大小;
利用正弦定理求利用正弦定理求ACAC和和BCBC;
利用余弦定理求利用余弦定理求AB.AB.测量两个不可到达点之间的距离方案:
测量两个不可到达点之间的距离方案:
形成规律形成规律在测量上,根据测量需要适当确在测量上,根据测量需要适当确定的线段叫做定的线段叫做基线基线,如例如例11中的中的ACAC,例,例22中的中的CD.CD.基线的选取不唯一,基线的选取不唯一,一般基线一般基线越长越长,测量的精确度,测量的精确度越越高高.形成结论形成结论解斜三角形应用题的一般步骤:
解斜三角形应用题的一般步骤:
(1)分析:
理解题意,分清已知与未知,画出示意图
(2)建模:
根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:
利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:
检验上述所求的解是否符合实际意义,从而得出实际问题的解实际问题中的常用角实际问题中的常用角
(1)仰角和俯角仰角和俯角与目标线在同一铅垂平面内的水平视线和与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯方叫仰角,目标视线在水平视线下方叫俯角角(如图如图)题型二测量高度问题题型二测量高度问题2)方向角:
相对于某正方向的水平角,如南方向角:
相对于某正方向的水平角,如南偏东偏东30,北偏西,北偏西45,西偏北,西偏北60等;
等;
(3)方位角方位角指从正北方向顺时针转到目标方向线的水指从正北方向顺时针转到目标方向线的水平角,如平角,如B点的方位角为点的方位角为(如图如图)例例3、AB是底部是底部B不可到达的一个建筑物,不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度为建筑物的最高点,设计一种测量建筑物高度AB的方法的方法分析:
由于建筑物的底部分析:
由于建筑物的底部B是不可到达的,所以不能直是不可到达的,所以不能直接测量出建筑物的高。
由解接测量出建筑物的高。
由解直角三角形的知识,只要能直角三角形的知识,只要能测出一点测出一点C到建筑物的顶部到建筑物的顶部A的距离的距离CA,并测出由点并测出由点C观察观察A的仰角,就可以计算的仰角,就可以计算出建筑物的高。
所以应该设出建筑物的高。
所以应该设法借助解三角形的知识测出法借助解三角形的知识测出CA的长的长。
选择一条水平基线解:
选择一条水平基线HG,使使H,G,B三点在同一条直线上。
由三点在同一条直线上。
由在在H,G两点用测角仪器测得两点用测角仪器测得A的的仰角分别是仰角分别是,CD=a,测测角角仪仪器的高是器的高是h.那么,在那么,在ACD中,中,根据正弦定理可得根据正弦定理可得例例3、AB是底部是底部B不可到达的一个建筑物,不可到达的一个建筑物,A为建筑为建筑物的最高点,设计一种测量建筑物高度物的最高点,设计一种测量建筑物高度AB的方法的方法例例4、在山顶铁塔上、在山顶铁塔上B处测得处测得地面上一点地面上一点A的俯角的俯角75,在塔底在塔底C处测得处测得A处的俯角处的俯角45。
已知铁塔。
已知铁塔BC部分的高部分的高为为30m,求出山高,求出山高CD.分析:
根据已知条件,应该设分析:
根据已知条件,应该设法计算出法计算出AB或或AC的长的长解:
在解:
在ABC中,中,BCA=90+,ABC=90-,BAC=-,BAD=.根据正弦定理,根据正弦定理,例例5一辆汽车在一条水平的公路上向正西行驶,一辆汽车在一条水平的公路上向正西行驶,到到A处时测得公路北侧远处一山顶处时测得公路北侧远处一山顶D在西偏北在西偏北30的方向上,行驶的方向上,行驶5km后到达后到达B处,测得此山处,测得此山顶在西偏北顶在西偏北75的方向上,仰角的方向上,仰角30,求此山的,求此山的高度高度CD.分析:
要测出高分析:
要测出高CD,只只要测出高所在的直角要测出高所在的直角三角形的另一条直角三角形的另一条直角边或斜边的长。
根据边或斜边的长。
根据已知条件,可以计算已知条件,可以计算出出BC的长。
的长。
例例5一辆汽车在一条水平的公路上向正西行驶,到一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶处时测得公路北侧远处一山顶D在西偏北在西偏北30的方向上,的方向上,行驶行驶5km后到达后到达B处,测得此山顶在西偏北处,测得此山顶在西偏北75的方向的方向上,仰角上,仰角30,求此山的高度,求此山的高度CD.解:
在ABC中,中,A=30,C=75-30=45.根据正弦定理,根据正弦定理,CD=BCtanDBCBCtan302041(m)答:
山的高度约为答:
山的高度约为2041米。
方程的思想方程的思想返回返回课外延伸课外延伸:
波利亚解题法波利亚解题法乔治乔治波利亚波利亚(GeorgePolya,18871985)是是20世纪举世公认的数学家,著名世纪举世公认的数学家,著名的数学教育家,享有国际盛誉的数学方法论大师波利亚在数学教育领域最的数学教育家,享有国际盛誉的数学方法论大师波利亚在数学教育领域最突出的贡献是开辟了数学启发法研究的新领域,为数学方法论研究的现代复突出的贡献是开辟了数学启发法研究的新领域,为数学方法论研究的现代复兴奠定了必要的理论基础波利亚致力于解题的研究,为了回答兴奠定了必要的理论基础波利亚致力于解题的研究,为了回答“一个好的一个好的解法是如何想出来的解法是如何想出来的”这个令人困惑的问题,他专门研究了解题的思维过程,这个令人困惑的问题,他专门研究了解题的思维过程,并把研究所得写成并把研究所得写成怎样解题怎样解题一书。
这本书的核心是他分解解题的思维过一书。
这本书的核心是他分解解题的思维过程得到的一张程得到的一张怎样解题表怎样解题表。
怎样解题表的主要内容是:
第一步:
你必须弄清问题。
1.已知是什么?
未知是什么?
要确定未知数,条件是否充分?
已知是什么?
2.画张图,画张图,将已知标上。
将已知标上。
3.引入适当的符号。
引入适当的符号。
4.把条件的各个部分分开。
把条件的各个部分分开。
第二步:
找出已知与未知的联系。
1.你能否转化成一个相似的、熟悉的问题?
你能否转化成一个相似的、熟悉的问题?
2.你能否用自己的语言重新你能否用自己的语言重新叙述这个问题?
叙述这个问题?
3.回到定义去。
回到定义去。
4.你能否解决问题的一部分?
你能否解决问题的一部分?
5.你是否利用你是否利用了所有的条件?
了所有的条件?
第三步:
写出你的想法。
1.勇敢地写出你的方法。
勇敢地写出你的方法。
2.你能否说出你所写的每一步的理由?
你能否说出你所写的每一步的理由?
第四步:
回顾。
1.你能否一眼就看出结论?
你能否一眼就看出结论?
2.你能否用别的方法导出这个结论?
你能否用别的方法导出这个结论?
3.你能你能否把这个题目或这种方法用于解决其他的问题?
否把这个题目或这种方法用于解决其他的问题?