第五章地理信息系统-最短路径算法PPT课件下载推荐.pptx
《第五章地理信息系统-最短路径算法PPT课件下载推荐.pptx》由会员分享,可在线阅读,更多相关《第五章地理信息系统-最短路径算法PPT课件下载推荐.pptx(13页珍藏版)》请在冰豆网上搜索。
如果两个港口之间无直接通航路线,则通过第三个港口转运。
那么,各个港口之间最廉价的货运线路是什么?
二、二、最短路径问题最短路径问题
(一)最短路径的含义
(一)最短路径的含义“时间时间”意义上的最短路径意义上的最短路径例如,某家经营公司有一批货物急需从一个城市运往另一个城市,那么,在由公路、铁路、河流航运、航空运输等4种运输方式和各个运输线路所构成的交通网络中,究竟选择怎样的运输路线最节省时间?
以上3类问题,都可以抽象为同一类问题,即赋权图上的最短路径问题。
不同意义下的距离都可以被抽象为网络图中边的权值。
权这种权值既可以代表“纯距离”,又可以代表“经济距离”,也可以代表“时间距离”。
(二)
(二)最最短路径的算法短路径的算法标号法标号法1959年E.W.Dijkstar提出的标号法是最短路径问题最好的求解方法。
标号法优点标号法优点不仅可以求出起点到终点的最短路径及其长度,而且可以求出起点到其他任何一个顶点的最短路径及其长度;
同时适用于求解有向图或无向图上的最短路径问题。
.n标号法的基本思想标号法的基本思想设G是一个赋权有向图,即对于图中的每一条边,都赋予了一个权值。
在图G中指定两个顶点,确定为起点和终点,不妨设v1为起点,vk为终点。
首先从v1开始,给每一个顶点标一个数,称为标号。
这些标号,又进一步区分为T标号和P标号两种类型。
其中,每一个顶点的T标号表示从起点v1到该点的最短路径长度的上界,这种标号为临时标号;
P标号表示从v1到该点的最短路长度,这种标号为固定标号。
在最短路径计算过程中,对于已经得到P标号的顶点,不再改变其标号;
对于凡是没有标上P标号的顶点,先给它一个T标号;
算法的每一步就是把顶点的T标号逐步修改,将其变为P标号。
那么,最多经过k-1步,就可以求得到从起点v1到每一个顶点的最短路径及其长度。
n标号法具体计算步骤标号法具体计算步骤如果刚刚得到P标号的点是vi,那么,对于所有这样的点将其T标号修改为:
minT(vj),P(vi)+wij。
若G中没有T标号,则停止。
否则,把点的T标号修改为P标号,然后再转入。
其中,满足开始,先给v1标上P标号P(v1)0,其余各点标上T标号T(vj)+(j1)。
标号法例子标号法例子最小生成树uvwxyzst节点前溯节点uuvuwuyvxwswtxzystartidendidtmpidmarked(N)=false标记数组stpdis(N)=OO最短距离preid(N)=-1前溯节点号crtid=startid设置当前节点whilecrtidendid搜索直到终点forlinkid=1toL搜索所有链接iflink.o=crtidthen如果与当前节点邻接tmpid=link.d并且另一端点的最短距离较大ifstpdis(crtid)+link.disstpdis(tmpid)thenstpdis(tmpid)=stpdis(crtid)+link.dispreid(tmpid)=crtid修改另一端点的最短距离和前溯节点endifendifnextcrtid=endid设置下一个当前节点fornodeid=1toN搜索所有节点ifmarked(nodeid)=false找到未标记的有更小距离的节点andstpdis(nodeid)stpdis(crtid)thencrtid=nodeid重新设置当前节点endifnextmarked(crtid)=true标记新的当前节点wendcrtid