信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt

上传人:b****2 文档编号:15558968 上传时间:2022-11-04 格式:PPT 页数:75 大小:2.87MB
下载 相关 举报
信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt_第1页
第1页 / 共75页
信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt_第2页
第2页 / 共75页
信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt_第3页
第3页 / 共75页
信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt_第4页
第4页 / 共75页
信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt_第5页
第5页 / 共75页
点击查看更多>>
下载资源
资源描述

信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt

《信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt》由会员分享,可在线阅读,更多相关《信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt(75页珍藏版)》请在冰豆网上搜索。

信号与系统(刘树棠译)第二章PPT课件下载推荐.ppt

4问题的实质:

问题的实质:

1.研究信号的分解:

即以什么样的信号作为构成任研究信号的分解:

即以什么样的信号作为构成任意信号的基本信号单元,如何用基本信号单元的线意信号的基本信号单元,如何用基本信号单元的线性组合来构成任意信号;

性组合来构成任意信号;

2.如何得到如何得到LTI系统对基本单元信号的响应。

系统对基本单元信号的响应。

作为基本单元的信号应满足以下要求:

1.本身尽可能简单,并且用它的线性组合能够表示本身尽可能简单,并且用它的线性组合能够表示(构成)尽可能广泛的其它信号;

(构成)尽可能广泛的其它信号;

2.LTI系统对这种信号的响应易于求得。

系统对这种信号的响应易于求得。

5如果解决了信号分解的问题,即:

若有如果解决了信号分解的问题,即:

若有则则将信号分解可以在时域进行,也可以在频域或变将信号分解可以在时域进行,也可以在频域或变换域进行,相应地就产生了对换域进行,相应地就产生了对LTI系统的时域分析法、系统的时域分析法、频域分析法和变换域分析法。

频域分析法和变换域分析法。

分析方法分析方法:

62.1离散时间离散时间LTI系统:

卷积和系统:

卷积和离散时间信号中离散时间信号中,最简单的是最简单的是,我们已经看到我们已经看到可以由它的线性组合构成可以由它的线性组合构成,即:

,即:

一一.用单位脉冲表示离散时间信号用单位脉冲表示离散时间信号对任何离散时间信号对任何离散时间信号,如果每次从其中取出如果每次从其中取出一个点,就可以将信号拆开来,每次取出的一个点一个点,就可以将信号拆开来,每次取出的一个点都可以表示为不同加权、不同位置的单位脉冲。

都可以表示为不同加权、不同位置的单位脉冲。

(Discrete-TimeLTISystems:

TheConvolutionSum)78二二.卷积和卷积和(Convolutionsum)于是有于是有:

表明:

任何信号任何信号都可以被分解成移位加权的单都可以被分解成移位加权的单位脉冲信号的线性组合。

位脉冲信号的线性组合。

如果一个线性系统对如果一个线性系统对的响应是的响应是,由线性特性就有系统对任何输入由线性特性就有系统对任何输入的响应为:

的响应为:

若系统具有时不变性,即若系统具有时不变性,即:

若若,则则9因此,只要得到了因此,只要得到了LTI系统对系统对的响应的响应单位脉冲响应单位脉冲响应(impulseresponse),就可以得到就可以得到LTI系统对任何输入信号系统对任何输入信号的响应:

的响应:

这表明:

一个一个LTI系统可以完全由它的单位脉冲系统可以完全由它的单位脉冲响应来表征。

这种求得系统响应的运算关系称为响应来表征。

这种求得系统响应的运算关系称为卷卷积和(积和(Theconvolutionsum)。

10三三.卷积和的计算卷积和的计算计算方法计算方法:

有图解法、列表法、解析法(包括数值解法)。

运算过程运算过程:

将一个信号将一个信号不动不动,另一个信号经反转后成另一个信号经反转后成为为,再随参变量再随参变量移位。

在每个移位。

在每个值的情况值的情况下,将下,将与与对应点相乘,再把乘积的各点对应点相乘,再把乘积的各点值累加值累加,即即得到得到时刻的时刻的。

例例1:

11.12例例2:

13时时,时时,时时,时时,时,时,14通过图形帮助确定反转移位信号的区间表示,对通过图形帮助确定反转移位信号的区间表示,对于确定卷积和计算的区段及各区段求和的上下限是于确定卷积和计算的区段及各区段求和的上下限是很有用的。

很有用的。

例例3.列表法列表法分析卷积和的过程,可以发现有如下特点:

分析卷积和的过程,可以发现有如下特点:

与与的的所有各点都要遍乘一次;

所有各点都要遍乘一次;

在遍乘后,各点相加时,根据在遍乘后,各点相加时,根据,参与相加的各点都具有参与相加的各点都具有与与的宗量之和的宗量之和为为的特点。

的特点。

Page-65:

例例2.515优点:

优点:

缺点缺点:

计算非常简单。

只适用于两个有限长序列的卷积和;

一般情况下,无法写出一般情况下,无法写出的封闭表达式。

的封闭表达式。

16(Continuous-TimeLTISystems:

Theconvolutionintegral)一一.用冲激信号表示连续时间信号用冲激信号表示连续时间信号与离散时间信号分解的思想相一致,连续时间信与离散时间信号分解的思想相一致,连续时间信号应该可以分解成一系列移位加权的单位冲激信号号应该可以分解成一系列移位加权的单位冲激信号的线性组合。

至少单位阶跃与单位冲激之间有这种的线性组合。

至少单位阶跃与单位冲激之间有这种关系:

关系:

对一般信号对一般信号,可以将其分成很多,可以将其分成很多宽度的区宽度的区段,用一个阶梯信号段,用一个阶梯信号近似表示近似表示。

当。

当时时,有有2.2连续时间连续时间LTI系统:

卷积积分系统:

卷积积分17引用引用,即:

则有则有:

18第第个矩形可表示为:

个矩形可表示为:

这些矩形叠加起来就成为阶梯形信号这些矩形叠加起来就成为阶梯形信号,即:

即:

任何连续时间信号任何连续时间信号都可以被分解成移位都可以被分解成移位加权的单位冲激信号的线性组合。

加权的单位冲激信号的线性组合。

于是:

当当时,时,19二二.卷积积分卷积积分(Theconvolutionintegral)与离散时间系统的分析类似,如果一个线性系统与离散时间系统的分析类似,如果一个线性系统对对的响应为的响应为,则该系统对,则该系统对的响应可的响应可表示为:

表示为:

表明表明:

LTI系统可以完全由它的系统可以完全由它的单位冲激响应单位冲激响应来表征。

这种求得系统响应的运算关系称为来表征。

这种求得系统响应的运算关系称为卷积积卷积积分分(Theconvolutionintegral)。

若系统是时不变的,即:

若若系统是时不变的,即:

若,则有,则有:

于是系统对任意输入于是系统对任意输入的响应的响应可表示为:

可表示为:

20三三.卷积积分的计算卷积积分的计算卷积积分的计算与卷积和很类似,也有图解法、卷积积分的计算与卷积和很类似,也有图解法、解析法和数值解法。

解析法和数值解法。

运算过程的实质也是:

参与卷积的两个信号中,运算过程的实质也是:

参与卷积的两个信号中,一个不动,另一个反转后随参变量一个不动,另一个反转后随参变量移动。

对每一移动。

对每一个个的值,将的值,将和和对应相乘,再计算相对应相乘,再计算相乘后曲线所包围的面积。

乘后曲线所包围的面积。

通过图形帮助确定积分区间和积分上下限是很有通过图形帮助确定积分区间和积分上下限是很有用的。

用的。

21例例1:

22例例2:

23当当时,时,当当时,时,当当时,时,当当时,时,当当时,时,Page-74:

例例2.8242.3线性时不变系统的性质线性时不变系统的性质(PropertiesofLinearTime-InvariantSystems)一一.卷积积分与卷积和的性质卷积积分与卷积和的性质1.交换律:

交换律:

25结论:

结论:

一个单位冲激响应是一个单位冲激响应是的的LTI系统对输入系统对输入信号信号所产生的响应,与一个单位冲激响应所产生的响应,与一个单位冲激响应是是的的LTI系统对输入信号系统对输入信号所产生的响应所产生的响应相同。

相同。

262.分配律:

分配律:

27结论:

两个两个LTI系统并联,其总的单位脉冲系统并联,其总的单位脉冲(冲激冲激)响响应等于各子系统单位脉冲应等于各子系统单位脉冲(冲激冲激)响应之和。

响应之和。

3.结合律结合律:

28两个两个LTI系统级联时,系统总的单位冲激系统级联时,系统总的单位冲激(脉冲脉冲)响响应等于各子系统单位冲激应等于各子系统单位冲激(脉冲脉冲)响应的卷积。

响应的卷积。

由于卷积运算满足交换律,因此,系统级联的先后由于卷积运算满足交换律,因此,系统级联的先后次序可以调换。

次序可以调换。

29产生以上结论的前提条件:

产生以上结论的前提条件:

系统必须是系统必须是LTI系统;

系统;

所有涉及到的卷积运算必须收敛。

30如如:

平方平方乘乘2乘乘2平方平方若交换级联次序,即成为:

若交换级联次序,即成为:

又如:

若又如:

若,虽然系统,虽然系统都是都是LTI系统。

当系统。

当时,如果交时,如果交换级联次序,则由于换级联次序,则由于不收敛,因而也是不收敛,因而也是不允许的。

不允许的。

显然与原来是不等价的。

因为系统不是显然与原来是不等价的。

因为系统不是LTI系统。

系统。

314.卷积运算还有如下性质:

卷积运算还有如下性质:

若若,则,则卷积积分满足微分、积分及时移特性:

卷积积分满足微分、积分及时移特性:

若若,则,则32若若,则,则卷积和满足差分、求和及时移特性:

卷积和满足差分、求和及时移特性:

恰当地利用卷积的性质可以简化卷积的计算:

若若,则,则33将将微分一次有微分一次有:

例如:

小节例如:

小节2.2中的中的例例2根据微分特性有根据微分特性有:

*34利用积分特性即可得利用积分特性即可得:

35二二.LTI系统的性质系统的性质1.记忆性:

记忆性:

LTI系统可以由它的单位冲激系统可以由它的单位冲激/脉冲响应来表征,脉冲响应来表征,因而其特性(记忆性、可逆性、因果性、稳定性)因而其特性(记忆性、可逆性、因果性、稳定性)都应在其单位冲激都应在其单位冲激/脉冲响应中有所体现。

脉冲响应中有所体现。

则在任何时刻则在任何时刻,都只能和都只能和时刻的输入有关,时刻的输入有关,和式中只能有和式中只能有时的一项为非零,因此必须有:

时的一项为非零,因此必须有:

根据根据,如果系统是无记忆的,如果系统是无记忆的,即:

36所以,无记忆系统的单位脉冲所以,无记忆系统的单位脉冲/冲激响应为:

冲激响应为:

如果如果LTI系统的单位冲激系统的单位冲激/脉冲响应不满足上述要脉冲响应不满足上述要求,则系统是求,则系统是记忆的记忆的。

2.可逆性:

可逆性:

如果如果LTI系统是可逆的,一定存在一个逆系统,且系统是可逆的,一定存在一个逆系统,且逆系统也是逆系统也是LTI系统,它们级联起来构成一个恒等系系统,它们级联起来构成一个恒等系统。

统。

当当时系统是时系统是恒等系统恒等系统。

此时,此时,37因此有:

因此有:

延时器是可逆的延时器是可逆的LTI系统,系统,其逆系统是其逆系统是,显然有:

,显然有:

累加器是可逆

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 哲学历史

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1