光催化分解水制氢_精品文档PPT格式课件下载.ppt
《光催化分解水制氢_精品文档PPT格式课件下载.ppt》由会员分享,可在线阅读,更多相关《光催化分解水制氢_精品文档PPT格式课件下载.ppt(192页珍藏版)》请在冰豆网上搜索。
M=Nb,Ta)SrTiO3,BaTi4O9K4Nb6O17,K2La2Ti3O10,MTaO3,ZrO2,Ta2O5,TiO2(3.2eV),SnO2(3.6eV),Fe2O3(2.1-2.2eV),CdS,CdSe,WO3,Cu2O,NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,主要的优化方法,掺杂(调控能带)(C,N,过渡金属或稀土掺杂等)包覆(降低超电势,增加稳定性,提高电子空穴分离效率,提供析氢活性中心)(贵金属等)染料分子或者稀土配合物敏化。
NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,加大电子和空穴的迁移率。
金属氧化物的导带和价带分别和金属的3d轨道、O的2p轨道相关。
金属的3d轨道重叠越多,电子的迁移率越高。
O2p轨道的重叠程度影响空穴的迁移率。
尽量减少半导体纳米粒子的缺陷,减少电子/空穴对的再结合位点。
NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,TiO2粒子中光生电子、空穴的衰减过程示意图,TiO2纳米粒子催化性能改进方法,制备更细的纳米粒子,提高比表面积,减少空穴迁移到表面的距离,减少电子空穴对再结合的机会;
掺杂过渡金属阳离子(Fe,Cr);
掺杂C,N,S,P,F,Cl,NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,EnergydiagramofaPECcellforthephoto-electrolysisofwater.Thecellisbasedonann-typesemiconductingphoto-anode.,NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,NanjingUniversityofAeronauticsandAstronauticsInstituteofNanoscience,TiO2中光生电子、空穴的不同衰减过程的特征弛豫时间,电子、空穴的产生:
TiO2+hvhvb+ecb-fs载流子被捕获过程:
hvb+TiIVOHTiIVOH+10nsecb-+TiIVOHTiIIIOH轻度捕获100psms(动力学平衡)ecb-+TiIVTiIII深度捕获10ns(不可逆)电子、空穴的复合:
ecb-+h+hvorpsecb-+TiIVOH+TiIVOH100nsshvb+TiIIIOHTiIVOH10ns表面电荷转移:
etr-+OxTiIVOH+Ox-很慢ms,主要过程特征时间尺度,TiIVOH+RedTiIVOH+Red+100ns,Nano-sizedTiO2photocatalyst:
opportunity&
challenge,reporter:
youshunLuansuperviser:
Prof.hengyongXu,DalianInstituteofChemicalPhysicsChineseAcademyofSciences,SeminarII,4/2006,Aim:
Netsolar-to-hydrogenconversionefficiencyof10%,Maincontent,IntroductionAdvantage&
shortageofTiO2ModificationmethodsConclusion&
outlook,其,其,石油,煤,天然气,其他,世界,Situationofenergyresource&
environment,Solarenergyisanabundant,economic,cleanreversibleresourcePhotocatalysis(UV-vis)isapromisingfieldforourenergysupply(H2OH2)andcontrolofpollution(VOCoxidation),Mechanismofphotocatalysis,WhyTiO2?
1n-typeTiO2electrode2platinumblackcounterelectrode3ionicallyconductingseparator4gasburet5loadresistance6voltmeter,FujishimaA.HondaK.,Nature,1972,37
(1):
238-245.,Goodphotoactivity(bandgap=3.2ev)oxidationofmostVOC&
waterPhoto&
chemicalstability,non-toxicityLowcost,easeofavailabilityPhotocatalysisgoestoTiO2era!
ChallengeofTiO2!
BecauseTiO2hasahighbandgap(3.2eV),itisexcitedonlybyUVlight(388nm)toinjectelectronsintotheconductionband.Thus,thislimitstheuseofsunlight(35%)orvisiblelightasanirradiationsourceinphotocatalyticreactionsonTiO2.Inaddition,thehighrateofelectronholerecombinationonTiO2particlesresultsinalowefficiencyofphotocatalysis,ModificationDecreasebandgapRestricte-/h+recombinationTransitionmetalNoblemetalNon-metalSemi-conductorcombination,Ti3d,CB,O2p,UV,VB,NHE,H+/H2,O2/OH-,CB,VB,h+,e-,UV,MechanismofMn+doping,MnCr3+,Co2+Fe3+.,V5+,Mn4+,Fe3+-dopedTiO2,H.Yamashita,etalJ.PhotochemPhotobioA:
Chem.148(2002)257261,Mo6+-dopedTiO2,Y.Yang,etalJ.PhotochemPhotobioA:
Chem.163(2004)517522,Ef,E,Eo,Ef,VB,CB,s,b,m,N-metal,n-semiconductor,SchottkyBarrierfromnoblemetal&
n-semiconductor,-,-,metal,SchottkyBarrier,h,Effectivelyrestricte-/h+recombination,Ag-TiO2,H.M.Sung,etalJ.PhotochemPhotobioA:
Chem.163(2004)3744,Ru-TiO2,T.Ohno,etalJ.PhotochemPhotobioA:
Chem.127(1999)107110,Ti3d,VB,CB,O2p,UV,e-,CB,VB,h+,UV,NHE,H+/H2,O2/OH-,Xn-=N3-,C4-,S2-,P3-,F-,N2p,Vis,Vis,MechanismofXn-doping,F-dopedTiO2,D.Li,etalJ.Fluor.Chem.126(2005)6977,N3-dopedTiO2,D.Li,Mater.Sci.Eng.B117(2005)6775,Cappedsemiconductor,Coupledsemiconductor,Mechanismofsemiconductorcombination,TiO2-WO3,X.Z.L