秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx

上传人:b****1 文档编号:15394517 上传时间:2022-10-30 格式:DOCX 页数:11 大小:177.87KB
下载 相关 举报
秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx_第1页
第1页 / 共11页
秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx_第2页
第2页 / 共11页
秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx_第3页
第3页 / 共11页
秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx_第4页
第4页 / 共11页
秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx

《秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx》由会员分享,可在线阅读,更多相关《秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx(11页珍藏版)》请在冰豆网上搜索。

秋北师大版九年级数学下册河南检测章末复习三 圆Word下载.docx

D.25°

 

命题点2 圆的对称性

3.下列四个图形中,既是轴对称图形,又是中心对称图形的是(C)

A.等边三角形B.平行四边形

C.圆D.正五边形

4.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°

,D是的中点,则∠ACD=125°

命题点3 垂径定理(河南中考2013T7)

5.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A、B不重合),连接AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=(B)

A.4B.5

C.5.5D.6

第5题图第6题图

6.(六盘水中考)赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.

命题点4 圆心角与圆周角定理(河南中考2017T18,2016T18,2013T7)

7.(福建中考)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是(D)

A.∠ADCB.∠ABD

C.∠BACD.∠BAD

第7题图第8题图

8.(绍兴中考)如图,一块含45°

角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°

9.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:

DB=DC.

证明:

∵∠DAE是⊙O的内接四边形ABCD的一个外角,

∴∠DAE=∠DCB.

又∵∠DAE=∠DAC,

∴∠DCB=∠DAC.

∵∠DAC=∠DBC,

∴∠DCB=∠DBC.

∴DB=DC.

命题点5 三角形的外接圆与内切圆

10.如图,点O是△ABC的内心,∠A=62°

,则∠BOC=(D)

A.59°

B.31°

C.124°

D.121°

11.已知等腰三角形ABC,如图.

(1)用直尺和圆规作△ABC的外接圆;

(2)设△ABC的外接圆的圆心为点O,若∠BOC=128°

,求∠BAC的度数.

解:

(1)如图.

(2)在优弧BC上任取一点D,连接BD,CD.

∵∠BOC=128°

∴∠BDC=∠BOC=64°

.

∴∠BAC=180°

-∠BDC=116°

命题点6 点、直线与圆的位置关系

12.(白银中考)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是(A)

A.相交B.相切

C.相离D.无法判断

13.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的(B)

A.3

B.4

C.5

D.6

命题点7 切线的性质与判定(河南中考2017T18,2014T17,2013T7)

14.(益阳中考)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°

,则∠D的度数为115°

第14题图第15题图

15.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°

,弦EF∥AB,则EF的长度为2.

16.(宿迁中考)如图1,在△ABC中,点D在边BC上,∠ABC∶∠ACB∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.

     图1           图2

(1)求证:

AC是⊙O的切线;

(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.

(1)证明:

连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE.

∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD.

∵AE为⊙O的直径,∴∠ADE=90°

∴∠EAD=90°

-∠AED.

∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD.

-∠CAD,即∠EAD+∠CAD=90°

∴EA⊥AC.∴AC是⊙O的切线.

(2)∵BD是⊙O的直径,

∴∠BAD=90°

,∠ABC+∠ADB=90°

∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,

∴4∠ABC=90°

.∴∠ABC=22.5°

(1)知∠ABC=∠CAD,∴∠CAD=22.5°

命题点8 与圆有关的计算(河南中考2017T10,2016T14,2015T14,2014T14)

17.如图,半圆的圆心为点O,直径AB的长为12,C为半圆上一点,∠CAB=30°

,则的长是(D)

A.12π

B.6π

C.5π

D.4π

18.已知扇形的圆心角为60°

,半径长为12,则扇形的面积为(D)

A.πB.2πC.3πD.24π

19.如图,已知⊙O的周长等于8πcm,则圆内接正六边形ABCDEF的边心距OM的长为(B)

A.2cm

B.2cm

C.4cm

D.4cm

20.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°

,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.

(1)求劣弧PC的长;

(结果保留π)

(2)求阴影部分的面积.(结果保留π)

(1)∵点D是AB的中点,PD经过圆心,

∴PD⊥AB.

∵∠A=30°

∴∠POC=∠AOD=60°

OA=2OD.

∵PF⊥AC,

∴∠OPF=30°

∴OF=OP.

∵OA=OC,AD=BD,

∴BC=2OD.

∴OA=BC=2.

∴⊙O的半径为2.

∴劣弧PC的长为=π.

(2)∵OF=OP,

∴OF=1.

∴PF==.

∴S阴影=S扇形OPC-S△OPF=-×

=π-.

03  综合训练

21.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°

,则弦BC的长等于(C)

A.B.

C.8D.6

第21题图第22题图

22.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为(A)

A.-B.-π

C.2-D.-

23.已知⊙O的半径为r,其内接正六边形,正四边形,正三角形的边长分别为a,b,c,则a∶b∶c的值为(C)

A.1∶2∶3B.3∶2∶1

C.1∶∶D.∶∶1

24.(河南调考)如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是(D)

A.∠CDB=∠BFDB.△BAC∽△OFD

C.DF∥ACD.OD=BC

第24题图第25题图

25.如图,已知直线y=x-4与x轴,y轴分别交于A,B两点,以C(0,1)为圆心、1为半径的圆上找一动点P,连接PA,PB,则△PAB面积的最大值是(A)

A.10B.9

C.6+D.9

26.已知,如图,半径为1的⊙M经过平面直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=30°

  习题解析

27.(郑州二模)四边形ABCD的对角线交于点E,且AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.

(1)利用图1,求证:

四边形ABCD是菱形;

(2)如图2,若CD的延长线与半圆相切于点F,且直径AB=8.

①△ABD的面积为16;

②的长为π.

∵AE=EC,BE=ED,

∴四边形ABCD是平行四边形.

∵以AB为直径的半圆过四边形ABCD的对角线交点E,

∴∠AEB=90°

,即AC⊥BD.

∴四边形ABCD是菱形.

28.(葫芦岛中考)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为点F,线段FD,AB的延长线相交于点G.

DF是⊙O的切线;

(2)若CF=1,DF=,求图中阴影部分的面积.

连接AD,OD.∵AB为直径,

∴∠ADB=90°

∴AD⊥BC.

∵AC=AB,

∴点D为线段BC的中点.

∵点O为AB的中点,

∴OD为△BAC的中位线.∴OD∥AC.

∵DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线.

(2)在Rt△CFD中,CF=1,DF=,

∴tan∠C==,CD=2.∴∠C=60°

∵AC=AB,∴△ABC为等边三角形.∴AB=4.

∵OD∥AC,∴∠DOG=∠BAC=60°

∴DG=OD·

tan∠DOG=2.

∴S阴影=S△ODG-S扇形OBD=DG·

OD-×

OB2=2-π.

29.如图所示,BC是半圆O的直径,AD⊥BC,垂足为点D,=,BF与AD,AO分别交于点E,G.求证:

(1)∠DAO=∠FBC;

(2)AE=BE.

(1)连接CF.

∵=,O为圆心,

∴点G是BF的中点,OG⊥BF.

∵BC是半圆O的直径,

∴CF⊥BF.

∴OG∥CF.

∴∠AOB=∠FCB.

∵∠DAO=90°

-∠AOB,∠FBC=90°

-∠FCB,

∴∠DAO=∠FBC.

(2)连接AC,AB.

∵=,

∴∠BCA=∠ACF=∠ABF.

∵BC为圆的直径,

∴∠BAC=90°

∴∠ABC+∠ACB=90°

又∵AD⊥BC,∴∠ADB=90°

∴∠ABC+∠BAD=90°

∴∠BAD=∠BCA.

∴∠ABF=∠BAD.

∴AE=BE.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 视频讲堂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1