应变式称重系统论文传感器 传感器综合实训论文Word格式.docx

上传人:b****1 文档编号:15370511 上传时间:2022-10-29 格式:DOCX 页数:15 大小:189.47KB
下载 相关 举报
应变式称重系统论文传感器 传感器综合实训论文Word格式.docx_第1页
第1页 / 共15页
应变式称重系统论文传感器 传感器综合实训论文Word格式.docx_第2页
第2页 / 共15页
应变式称重系统论文传感器 传感器综合实训论文Word格式.docx_第3页
第3页 / 共15页
应变式称重系统论文传感器 传感器综合实训论文Word格式.docx_第4页
第4页 / 共15页
应变式称重系统论文传感器 传感器综合实训论文Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

应变式称重系统论文传感器 传感器综合实训论文Word格式.docx

《应变式称重系统论文传感器 传感器综合实训论文Word格式.docx》由会员分享,可在线阅读,更多相关《应变式称重系统论文传感器 传感器综合实训论文Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

应变式称重系统论文传感器 传感器综合实训论文Word格式.docx

1.1引言---------------------------------------------------------------1

1.2采用应变片称重的基本原理-------------------------------------------1

1.3组成及框图---------------------------------------------------------1

2硬件电路设计--------------------------------------------------------2

2.1应变电桥电路-------------------------------------------------------2

2.2仪表放大器电路-----------------------------------------------------3

2.3A/D转换电路--------------------------------------------------------5

2.4显示电路-----------------------------------------------------------6

3软件设计------------------------------------------------------------7

3.1程序流程图---------------------------------------------------------7

3.2源程序清单---------------------------------------------------------7

4系统调试与分析------------------------------------------------------9

4.1硬件调试-----------------------------------------------------------9

4.2软件调试----------------------------------------------------------10

4.3综合调试----------------------------------------------------------10

4.4故障分析与解决方案------------------------------------------------10

5功能测试及结果分析-------------------------------------------------11

5.1测试仪器----------------------------------------------------------11

5.2测试结果与分析----------------------------------------------------11

6体会与建议---------------------------------------------------------11

参考文献--------------------------------------------------------------12

附录-----------------------------------------------------------------13

1.概述

1.1.前言

在日常生活中,电子称的应用十分广泛,平时在见到电子称的时候我就会想,这东西到底是怎么实现称重的呢?

传统的机械称在称重的时候由于人为因素,误差很大。

在学完传感器之后,我对应变片这一块很感兴趣,同时也了解到用于电子秤的称重传感器的压缩量通常可以忽略不计,可以安装在工业过程设备中。

在这一次设计的系统是基于单片机控制的电子称可以说是精度高,智能化程度高,可以在实践生产中广泛应用。

1.2.应变称重系统基本原理

利用传感器与检测技术实验室已有的应变式称重台,将四片应变片此采用全桥形式接入测量电路,经过运放OP07组成仪表放大器放大,再由串行模数转换芯片TLC549进行A/D转换,转换结果送入单片机At89C51,通过同向门7407驱动四位数码管显示。

仪表放大器的输出需经采集卡采集,经CSY9.0虚拟仪器软件分析,得到较好的线性度和灵敏度后,再送入AD芯片进行转换。

1.3.组成及框图

图1系统框图

2.硬件电路设计

2.1应变电桥电路

电阻应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻应变敏感元件构成。

当被测物理量作用在弹性元件上时,弹性元件的变形引起应变敏感元件的阻值变化,通过转换电路转换成电量输出,电量变化的大小反映了被测物理量的大小。

其主要缺点是输出信号小、线性范围窄,而且动态响应较差。

但由于应变片的体积小,商品化的应变片有多种规格可供选择,而且可以灵活设计弹性敏感元件的形式以适应各种应用场合,所以用应变片制造的应变式压力传感器在测量力、力矩、压力、加速度、重量等参数中仍有非常广泛的应用。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

当具有初始电阻值R的应变片粘贴于试件表面时,试件受力引起的表面应变,将传递给应变片的敏感栅,使其产生电阻相对变化。

在一定应变范围内与的关系满足下式:

式中,为应变片的轴向应变。

定义为应变片的灵敏系数。

它表示安装在被测试件上的应变在其轴向受到单向应力时,引起的电阻相对变化与其单向应力引起的试件表面轴向应变之比。

电阻应变片计把机械应变转换成后,应变电阻变化一般都很微小,例如传感器的应变片电阻值120Ω,灵敏系数K=2,弹性体在额定载荷作用下产生的应变1000,应变电阻相对变化量为:

可以看出电阻变化只有120*0.002=0.24Ω,其电阻变化率只有0.2%。

这样小的电阻变化既难以直接精确测量,又不便直接处理。

因此,必须采用转换电路,把应变片计的变化转换成电压或电流变化。

通常采用惠斯登电桥电路实现这种转换。

若将电桥四臂接入四片应变片,如图2所示,即两个受拉应变,两个受压应变,将两个应变符号相同的接入相对桥臂上,构成全桥差动电路。

图2全桥电路

在接入四片应变片时,需满足以下条件:

相邻桥臂应变片应变状态应相反,相对桥臂应变片应变状态应相同。

可简称为:

“相邻相反,相对相同”。

此时

全桥差动电路不仅没有非线性误差,而且电压灵敏度是图2全桥电路为单片工作时的4倍,同时具有温度补偿作用。

当E和电阻相对变化一定时,电桥的输出电压及其电压灵敏度与各桥臂阻值的大小无关。

2.2.仪表放大器电路

2.2.1.仪表放大器工作原理

由于传感器的输出信号往往较小,必须经过放大电路进行调理放大,再进行测量。

常用的放大电路可以由单运放放大器、双运放放大器、三运放放大器或直接由集成仪表放大器(如AD620、AD623)等构成。

下面以三运放构成的仪表放大器为例说明仪表放大器的工作原理及性能指标,运算放大器选择高精度运放OP07。

图3OP07管脚功能图

2.2.3.仪表放大器工作电路

图4、图5是压力传感器的测量电路,并在Multisim10.1仿真软件仿真测试(见附录一),由两个部分组成。

前一部分是采用三个运放构成的仪表放大器,后面的放大器将仪表放大器的输出电压进一步放大。

R8是电桥的调零电阻,R17是整个放大电路的调零电阻,R8,R19调整运放增益。

仪表放大器因为输入阻抗高,共模抑制能力好而作为电桥的接口电路。

其增益可用下式表示:

反相放大器部分的增益可用下式表示:

图1仪表放大器

图2反向放大器

2.3.A/D转换电路

一般电子秤的A/D转换精度越高越好,A/D精度越高,电子秤的灵敏度越高。

但12位的A/D芯片价格比较贵,考虑到实验室条件,本次设计采用8位串行A/D芯片TLC549。

TLC549是美国德州仪器公司生产的8位串行A/D转换器芯片,可与通用微处理器通过SDO、SCLK、CS三条口线进行串行接口"

具有4MHz片内系统时钟和软硬件控制电路,转换时间最长17微秒。

允许的最高转换速率为40000次/秒。

总失调误差最大为±

0.5LSB(最低有效位)。

可用于较小信号的采样。

与AT89C51的具体连接线路如图6所示。

REF+接5V电源,REF-接地,TLC549的AIN引脚接仪表放大器的输出端。

SDO、CS、SCLK分别接AT89C51的P1.0、P1.1、P1.2引脚。

图3TLC549电路连接

TLC549在读出前一次数据后,马上进行电压采样,ADC转换,转换完后就进入HOLD模式,直到再次读取数据时,芯片才会进行下一次A/D转换。

也就是说,本次读出的数据是前一次转换的值,读操作后就会再启动一次转换,一次转换所用的时间最长为17uS。

2.4.显示电路

采用4个共阴数码管,以动态扫描方式显示电压值,如下图示。

图4显示电路

3.软件设计

3.1程序流程图

3.2源程序清单

#include<

reg51.h>

#include<

intrins.h>

#defineucharunsignedchar

#defineuintunsignedint

#definedatapointP0

#definebitpointP2

ucharcodeword[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f};

ucharcodebitword[]={0xfe,0xfd,0xfb,0xf7};

sbitSCLK=P1^2;

sbitSDO=P1^0;

sbitCS=P1^1;

ucharBCD[4];

uintADSS;

ucharADS[20];

voiddelayshort();

voiddisplay();

voidTOBCD();

voidAD();

voiddelay_50us(uintt);

voidmain()

{ucharp;

while

(1)

{

AD();

TOBCD();

for(p=0;

p<

100;

p++)

display();

}

}

voidAD()

{

uchari,j;

for(j=0;

j<

20;

j++)

{CS=1;

SCLK=0;

_nop_();

CS=0;

for(i=0;

i<

8;

i++)

{

SCLK=1;

_nop_();

ADS[j]=ADS[j]<

<

1;

if(SDO==1)

ADS[j]++;

SCLK=0;

}

CS=1;

//禁止TLC549,再次启动A/D转换

delay_50u

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1