晶体形核与长大Word文件下载.docx

上传人:b****2 文档编号:15246385 上传时间:2022-10-28 格式:DOCX 页数:26 大小:635KB
下载 相关 举报
晶体形核与长大Word文件下载.docx_第1页
第1页 / 共26页
晶体形核与长大Word文件下载.docx_第2页
第2页 / 共26页
晶体形核与长大Word文件下载.docx_第3页
第3页 / 共26页
晶体形核与长大Word文件下载.docx_第4页
第4页 / 共26页
晶体形核与长大Word文件下载.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

晶体形核与长大Word文件下载.docx

《晶体形核与长大Word文件下载.docx》由会员分享,可在线阅读,更多相关《晶体形核与长大Word文件下载.docx(26页珍藏版)》请在冰豆网上搜索。

晶体形核与长大Word文件下载.docx

系统总的自由能∆G的变化是上述两个自由能变化之和:

∆G=-∆Gv+∆G0(5.1)

上式中“-”号表示能量减少,“+”号表示增加。

假设晶核是球形的,则有:

(5.2)

(5.3)

r为核半径,∆gv为相变过程中单位体积自由能的变化,σ是新相与熔体之间的表面张力。

将(302)和(303)式代入(301)式得:

(5.4)

据(304)式绘成图3-1,从图3-1分析可知,当r<

r*时,(304)式中的界面能的变化起主要作用,晶核的长大使系统的自由能增大,晶核不能稳定生长;

只有当r>

r*时,系统自由能才是减小的。

此意味着晶核能稳定生长。

r*称为临界半径,其对应自由能记为∆G*,小于r*的新相称晶胚,大于r*的则是晶核。

当r=r*时,∆G/∆r=0。

据此可解出:

(5.5)

∆G*=0.58×

10-18J,r*=1.05nm---是否可说明几十纳米大小的小颗粒都可作为晶核长大?

Rowlands【92】和James【93】在试验中发现,临界核并不是球形的。

TEM的研究结果表明,玻璃内部的晶核为板状,其特征尺寸为1.9×

0.72×

3.2nm

图3-1,3-2待扫描

(图)

 

∆G*与过冷度∆T有如下近似关系:

∆G*≈1/∆T2(5.6)

可见,当体系温度接近晶核熔点,即∆T→0时,G*无穷大。

成核是不会发生的。

Becker,Frenkel和Volmer等分别提出了均匀成核的速度I的方程式为:

I=Aexp(-∆G*/KT)(5.7)

式中A为常数。

上式推导过程中忽略了扩散速度的影响。

而实际上,一定过冷度的熔体中,质点穿过粘性熔体时的扩散活化能Q很可能构成成核的主要势垒。

因此,有必要将(307)式修改成:

I=Aexp[-(∆G*+Q)/KT](5.8)

上式表明,当过冷度很小时,∆G*很大,I很小;

随着温度降低,一直到∆G*大小可以与Q相比时,成核速度I最大;

继续冷却,∆G*与Q相比可以忽略不计,I又减小。

因此可得到均匀成核速度与温度的关系如图3-2中均匀成核速度曲线。

该曲线有一个极大值。

如果将Stokes-Einstein的扩散公式代入(308)式,又可定性地得到某一温度下晶核数目与时间的关系(如图3-3所示)。

从图中可以看出,在成核后期出现一个饱和状态。

此时单位体积晶核数几乎恒定。

(图)3-4

以上讨论的是经典成核理论,式(308)等公式在推导中假设:

单位体积自由能∆Gv与晶胚大小无关;

晶胚具有明显的边界和确定的表面能;

晶胚分布严格服从Boltzmann函数。

实际上情况并不能严格遵守所假定的条件。

所以经典成核理论只能作定性描述。

对于定量问题只能靠试验测试。

James,Douglas和Matusita曾仔细研究单位体积内晶核数目的测定方法。

b.非均匀成核

非均匀成核是指有异质晶核存在时主相成核容易得多的现象。

在原固相与主相之间,不排除发生交互晶体取向作用使异质晶核与主相原子结合而继续生长。

这种极端情况下根本不需要克服成核势垒。

而常规情况下,在过冷玻璃熔体中,各种表面的作用是借减少(301)方程中的表面张力而降低均匀成核所需的势垒,即通过降低自由能∆G*来实现。

非均匀成核并不能改变液相与晶相之间的体积自由能∆gv,也不能改变扩散活化能Q。

因此,催化表面的作用取决于在衬底-熔体-析出物质交接处的接触角θ(如图3-4所示)。

Turnbull和Vonnegut【94】把(5.8)式修改,并考虑扩散活化能的影响,提出如下的非均匀成核速度Iσ的表达式:

(5.9)

其中

(5.10)

从(310)式不难看出,,。

(309)实际上就是(5.8)式,不发生非均匀成核。

对于任何接触角小于180°

的情况,在异质表面上形成晶核的自由能势垒都比均匀成核要小。

其结果表现在,非均匀成核无论在哪里都可能比均匀成核优先发生。

除了角,基底表面曲率也是影响非均匀成核的一个重要因素。

对于这个问题,Fletoher【95】进行了理论探讨。

他的研究表明,凸表面的半径小于某个值时就不能提供有效的成核位。

(如两个小晶核合并,就会形成凹面,有利于形核?

)James对硅酸盐玻璃的试验证实了上述结论。

5.2.2晶体长大--玻璃分相与结晶(五)

晶体的生长模式多种多样,无论那种形式,决定晶体生长的都是如下两个因素:

①不规则的玻璃结构能够重新排列成将要生成晶体的周期性晶格的速度;

②在析晶过程中,所释放的能量从晶体——玻璃界面上导走的速度。

高温时结晶热难以传导走,生长速度较低。

随着温度的降低晶体生长速度提高。

而低温时的高粘度妨碍了晶体生长速度的提高,所以随温度降低晶体生长速度减慢。

因此,在某一温度下出现一个极大值(见图3—2)。

由于晶体生长于成核式两个不同的过程,所以极大值对应的温度也不同。

一般情况下,晶体生长最高速度所对应的温度比成核的高。

a.一般模式

许多文献都给出了玻璃结晶速度的各种定量计算关系式。

Uhlmann将其中几种作了概括总结。

设粒子的传输是由扩散系数D决定,而且跃迁距离为a的粒子进入晶体结构的频率用因素f表征,如统计地考虑溶化自由焓为ΔGs的结晶体的构成及解体,将得到结晶线速度KG为:

KG=fD[1-exp(-ΔGs/RT)]/a(3.14)

将ΔGs分解成:

ΔGs=ΔHs-Ts≈ΔHs-TΔHs/Ts=-ΔHsΔT/Ts(3.15)

考虑到扩散系数与粘度的反比关系,并将(315)式带入(314)式得:

KG=C[1-exp((-ΔHsΔT)/(RTTs))]/η(316)

C为比例常数.在Ts温度下,熔化自由焓ΔGs为正值,过冷度ΔT恒为负.如果忽略D及η随温度的变化,且过冷度不大时,则有

KG=(CΔHsΔT)/(RTTsη)(317)

从(317)式可知,结晶线速度与ΔT成正比,而与η成反比。

Uhlmann测定GeO2的结晶及溶化线速度如图3-5所示。

从图中可以看到:

结晶最大速度KGmax=6.2μm/min,对应温度Tmax=1030℃。

这与(317)式计算结果很相近。

Wagstaff对石英玻璃的研究也得到了与Uhlmann类似的结果。

但Leko对石英玻璃的研究却发现计算值与实测值误差很大。

误差的产生式不难理解的。

(317)式描述的晶体生长,其单个原子附着到晶体表面的任何位置的几率是相同的。

而实际上不一定以单个原子的形式附着生长,更常以原子集合体的形式粘附上去。

而且当晶体长到一定大小后,其顶点、楞和面接受溶质的机会都不一样。

导致晶体生长方式不同,长成后晶体形态也不同。

b.晶体成核与生长

以上晶体的核化与生长的速度公式,都把核化与晶体生长分开考虑。

而实际上,在一定的温度范围内,玻璃即有一定的成核速度,又有一定的晶体生长速度。

换一句话说,玻璃在热处理中,成核与生长可能同时发生。

Johnson和Mehl研究了这种情况下的结晶(包括晶体核化与生长的过程)速度表达式。

令x为材料由液体转变为晶体的百分数,假定晶体生长速度u为常数,那么在时间t内晶体的线尺寸可由u(t-τ)来确定。

此处τ为形成晶体相的诱导时间,倘若生长速度各方向相同,与使将生长成一个球状晶体。

它的体积可表示为:

Vp=4π[u(t-τ)]3/3(318)

在晶化初期,V液远大于V晶。

可忽略液相体积的减小,则给定时间t时的晶相体积为:

X=V晶/V液=∫τ=tτ=0VpIdt(319)

考虑到晶化发生后液相体积必然减少,用(V液-V晶)代V液,并假设成核速度为常数。

对(319)式积分可得:

1-Xt=exp(-πu3It4/3)(320)

(320)式就是著名的Johnson-Mehl公式【】。

它表示在晶体的成核与生长同时发生的情况下,液体转变为晶体的体积百分数与成核速度、生长速度和时间的关系。

(3)玻璃受控析晶

结晶曾经是对各种玻璃生产干扰最大的现象之一,人们把结晶看作是玻璃的缺陷。

早期关于玻璃的研究都是以克服结晶这种缺陷为目的。

玻璃生产中的失控结晶,即作为缺陷现象的结晶,一般特征是晶体大小不一,各种尺寸都有。

这是因为生产中的偶然机会,使得某一时间、某一地点具备了造就超过临界尺寸而有生长能力的晶核,而其它地方也许迟得多才出现这种情况或根本不出现。

受控析晶正是这一点上与失控结晶截然不同,其成核与生长都是按一定的工艺制造要求严格控制的。

受控析晶的特点是:

①在整个玻璃体内均匀得具有极高地成核速度;

②晶体大小非常均一;

晶粒尺寸小。

微晶玻璃的发展是从Becker在1913年提出第一个专利开始的。

Albrecht的研究有奠定了发展基础。

更由于Stookey的开创性工作使之发展到生产成熟阶段。

至今,受控析晶的研究已取得了丰硕的成果。

如今,人们以制成近千种特种组成的微晶玻璃,应用于从生活日用品到空间技术的各个领域。

为了控制玻璃晶化,首先要选择合适的玻璃组成。

选择的最重要标准能是它应该在无需过分长的热处理就能结晶。

同样重要的时玻璃组分及其比例。

要使生产出来的晶体类型给与最终的微晶玻璃所希望的性能,需要注意的是太容易或太难析晶的玻璃组分都不能选用。

前者不以控制晶体的大小和数量,后者热处理过程太长而不经济。

另外,仔细选择晶核剂也是控制晶化的关键。

受控析晶的第二个关键是热处理。

Stookey描述了典型的微晶玻璃的热处理工艺如图3-6。

阶段I是熔好的无色透明玻璃加工和冷却。

随后加热到温度(成核温度)的进程中,晶核形成(阶段II)。

温度再提高到T2(结晶温度),在阶段III升温到T2的进程中,玻璃完全结晶。

阶段IV是成品冷却。

5.2.3LMGC材料的形核与长大

对云母型微晶玻璃来说,云母相是其主晶相,云母的数量,大小,形态,分布是至关重要的,而这些又与材料的成分,分相结构,形核与长大机理密切相关.本研究对成分有差别的两种云母型玻璃陶瓷进行了研究,观察到与分相结构相关的两种不同形核长大机理.

前面第四章已论述了分相的形式有两种,即4.3.1讨论的亚稳分解(Spinodaldecomposition)和4.3.2讨论的形核-长大分相机制,对晶化样品的观察表明,对应于不同的分相机制,出现了两种不同的晶体形核-长大机制.

a.以亚稳分解分相机制为基础,通过原子扩散进行形核与长大---晶体细小---调幅分解分相为基础

1)显微结构的变化

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1